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Abstract 

It is difficult to achieve mutual understanding of complex information between individuals that are 

separated geographically.  Two well-known techniques commonly used to deal with this difficultly are 

collaboration and information visualization.  This thesis develops a generic flexible framework that 

supports both collaboration and information visualization.  It introduces the Collaborative Visualization 

Environment (COVE) framework, which simplifies the development of real-time synchronous multi-user 

applications by decoupling the elements of collaboration from the application.  This allows developers to 

focus on building applications and leave the difficulties of collaboration (i.e. concurrency controls, user 

awareness, session management, etc.) to the framework. 

The framework uses an object sharing approach to share information and views between 

participants in a collaborative session.  This approach takes advantage of several Java technologies (i.e. 

JavaBeans™, Jini™, and JavaSpaces™).  JavaBeans™ establish a well-known standard for applications to 

operate within the framework.  Jini™ services provide framework stability and enable code sharing across 

the network.  Objects are shared between remote clients through the JavaSpaces™ service. 
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A COLLABORATIVE VISUALIZATION FRAMEWORK 

USING JINI™ TECHNOLOGY 

I. Introduction 

It is very difficult to achieve mutual understanding of complex information between individuals 

that are separated geographically.  Common gestures that are regularly used to communicate one’s feelings 

and emphasize important elements are not entirely conveyed between individuals that are not in a face-to-

face meeting.  Thus, when separated geographically, other techniques must be used to help individuals 

communicate and convey ideas.  Joint understanding of complex data can be improved through the use of 

information visualization techniques and interaction with the information through navigation.  In this 

research the concept of visualizing information through a collaborative environment is known as 

collaborative visualization. 

Information visualization techniques present information visually and provide a set of tools to 

interact with the data, thus allowing for a greater understanding of the information.  Collaboration 

techniques are then used to share and interact with the information and other people to further the mutual 

understanding of the individuals involved.  This capability to enhance mutual understanding is relevant in 

many areas of industry, education and the military. 

One important application of collaborative visualization is in the realm of command and control 

(C2).  Command and control systems provide commanders with critical information to aid them in making 

decisions.  Hidden or obscured information may lead to incorrect decisions resulting in unnecessary 

damage, injury or death.  Collaborative visualization enables experts to uncover the hidden information and 

provide it to commanders so decisions are made that minimize risk and maximize desired outcomes. 
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Teams or divisions of people are found in almost every facet of life, and certainly when these 

people are separated geographically, communication and collaboration barriers can be created.  This holds 

true in a combat situation where many different systems must work together to provide leaders with 

information to guide their decisions.  The creation of nonintegrated repositories of data or hardware 

components, each designed for a specific purpose that is not reconciled with each another is the concept 

referred to as “stovepipe” systems.  This creates serious problems for the logistics communities due to the 

uniqueness of systems within the military.  Providing a mechanism for teams of engineers to collaborate 

and share ideas and provide mutual understanding could greatly increase the military’s ability to develop 

and sustain new weapon and support systems. 

In the education arena, distance learning and satellite education and training are becoming 

increasingly more popular.  The goal of such programs is to provide educational and training services to 

people across the globe and to bring people together to collaborate and exchange ideas and work together to 

edify each other.  Collaborative visualization has similar goals in that we want to provide a mechanism to 

increase understanding through visualization and interactive communication.  The military can use these 

techniques to train people all over the world, saving the government money in travel and accommodation 

costs. 

The importance of collaborative visualization can be seen in all walks of society, and especially in 

the Department of Defense (DoD).  The focus of this thesis is the application of collaborative visualization 

techniques to develop a generic framework to support the command and control arena. 

1.1 Background 

The current capabilities of combat weapon systems are limited in many different ways.  They 

involve labor-intensive collection and coordination processes to disseminate relevant information to 

commanders and people within a battlespace.  Current processes and systems gather great amounts of data, 

but the ability to make use of that data is limited, thus creating an environment for information starvation.  

Information starvation is the inability to make effective use of the current information already gathered, 
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thus commanders do not have the necessary information needed to make advantageous decisions.  In 

addition, the immense amount of data causes information overload, due to the fact that there is too much 

data to process.  Currently there is little interoperability in joint and coalition force systems, which creates 

difficult circumstances to integrate information and provide a synergy for operations.  Figure 1 typifies how 

our current combat systems have worked in the past.  Interoperability exists between some systems, but 

little cross-flow of information between systems in the horizontal direction is present.  The lack of cross-

flow creates systems that are nonintegrated and designed for specific purposes.  The lack of interoperability 

creates these “stovepipes” and they hamper the effectiveness of forces to fight and win battles.  Disjoint 

workflows and wasted man-hours result from this lack of synergy.  The Department of Defense and other 

government and private agencies collect information every day.  This information is being underutilized, 

often duplicated, and not fused together to create a seamless current overall view of the battlespace.  This 

hinders the ability of a commander to make the right decision in the right time. 

 

Figure 1.  Current Combat Information Reality [57] 

The United States Air Force Scientific Advisory Board presented the concept for the Joint 

Battlespace InfoSphere (JBI) in the report Information Management to Support the Warrior [57].  This 

concept was envisioned to help overcome these challenges that face our combat systems today.  The JBI “is 

a combat information management system that provides individual users with the specific information 

needed to accomplish their functional responsibilities during a crisis or conflict” [48].  Its main challenge is 

“providing the right information at the right time, disseminated and displayed in the right way, so 
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commanders and crew chiefs can do the right things in the right time in the right way” and do it faster than 

the enemy [48].  The vision of JBI is to integrate or fuse current combat systems in a seamless environment 

known as the “Battlespace InfoSphere”, as depicted in Figure 2. 

 

Figure 2.  Joint Battlespace InfoSphere of Tomorrow [57] 

The Battlespace InfoSphere can integrate information systems of today and tomorrow and should 

provide the synergy needed for the future.  Combat operations in the future are likely to depend on 

integration of information systems, due to the need to share information.  This is evident today due to the 

events of September 11, 2001 in New York City, New York.  Current military operations in Afghanistan 

and throughout the world depend on shared information sources from around the world.  Further JBI 

discussion follows in Chapter II. 

1.2 Problem Statement 

The focus of this research is to develop a flexible collaborative visualization framework for 

integrating tools (implemented as JavaBeans™) into an environment that enables collaboration between 

geographically separated users.  Through a review of related work, the following characteristics have been 

identified as important for such a framework: automation, shared state, consistency, scalability, 

4 



 

communication, robustness, dynamic loading, coupling, language support, flexibility, coordination of 

action, monitoring, and protection.  These characteristics are discussed in detail in Section 3.1.1. 

A comparative analysis between the developed framework and others is performed to evaluate the 

overall effectiveness of the framework.  The criteria for the evaluation is a measure of how well each 

framework fulfills the characteristics listed above. 

1.2.1 Goals 

The overall goal of this research is to create a framework that supports both collaboration and 

information visualization techniques.  To measure the success of the framework, the following sub-goals 

are established: 

• Shared interaction – the collaboration between geographically separated users interacting with 

data and visual representations to accomplish tasks.  The characteristics used to measure this 

goal are: shared state, data consistency, communication, coordination of action, monitoring, 

and protection. 

• Visual sharing – remote users collaborate at a higher level of abstraction than the data through 

the sharing of visual objects.  The criteria established to measure the effectiveness of this goal 

are visual consistency and visual collaboration. 

• Remote code access –users access remote data and applications without the need for previous 

installation.  Dynamic loading is used to measure the effectiveness of the framework in 

meeting this goal. 

• Easy tool integration – flexibility to easily integrate any Java tool and make it collaborative.  

To measure this goal the following criteria are used: generality, automation, and coupling. 

• Facilitate software development – the purpose of a framework is to ease the burden of 

developers in developing software.  The following characteristics are defined to measure the 
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capability of the framework: scalability, robustness, standard language support, and 

flexibility. 

Fayad, Schmidt, and Johnson [18] added that a framework must be modular, extensible, and reusable.  

Modularity is the division of software into logical components, thus reducing the complexity and effort 

required to understand and maintain software.  Extensibility is the ability for software to be extended to 

meet the needs of new users.  This allows for customization of new applications and services.  Reusability 

enables generic components to be mixed and matched to produce the desired functionality of an 

application. 

With the understanding of what makes up a good framework, the framework developed in this 

research must include common elements of a collaborative system along with support for information 

visualization techniques.  Some key elements of a collaborative system as defined by Gutwin and 

Greenburg [22] are: explicit communication, consequential communication, coordination of action, 

monitoring, assistance, and protection.  These concepts are discussed further in Chapter II.  These 

collaborative components provide a good measure to ensure this framework supports the necessary 

collaborative objective.  In addition, the framework should include a set of information visualization tools 

and techniques to display large sets of data.  The techniques used in the framework need to be generic to 

support many different types of information. 

In summary, this research should produce a modular, extensible and reusable collaborative 

visualization framework.  This framework should be able to share information in a common space, and 

enable communication of individuals effectively and efficiently, in addition to providing effective 

information visualization tools to display large quantities of data. 

1.2.2 Constraints 

There are a number of limiting factors imposed upon this development and research effort.  Jini™ 

technology is the primary focus for communication between hosts and provides the mechanism for object 

sharing.  This restriction is due to the desires of the sponsor, Air Force Research Labs, Information 
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Technology Division (AFRL/IFTC), to use Jini™ technology as one of many middleware technologies as 

part of the backbone for the Joint Battlespace InfoSphere.  Additionally, Jini™ technology provides the 

desired capabilities needed in the distributed collaborative environment. 

One of the desired capabilities of the framework is to enable collaboration at a higher level of 

abstraction than that of the data.  This concept of visual sharing has the potential to require greater amounts 

of bandwidth due to the need to send entire objects across a network instead of small data changes.  Such 

bandwidth issues are not explicitly considered in the design of the framework. 

To develop a framework that supports every type of application and programming construct 

without any constraints would be an arduous task if not impossible.  Thus to limit the set of applications, 

the JavaBeans™ [52] component architecture is used.  This allows for a generic solution to be developed 

by restricting the possibilities of applications to a well-defined component architecture.  Thus, the design of 

the framework can utilize the JavaBeans™ technology to its advantage. 

Voice and video collaboration is not addressed as part of the research, due to the fact that Jini™ 

does not readily support data streaming.  Commercial-off-the-Shelf (COTS) products, like Windows 

NetMeeting and others, may be appropriate to use for video and voice communications. 

Consequential communication is information that is “given off” unintentionally by others as they 

go about their activities.  This information is communicated through the manipulation of artifacts or the 

characteristic actions of a person in a workspace [22].  Some consequential elements are handled by the use 

of annotation tools within a whiteboard environment.  Finger pointing can be simulated by mouse 

annotation, thus covering a small element of consequential communication.  This research does not address 

every consequential communication element of a collaborative system.  Much research is needed in this 

area to be able to capture facial gestures, finger pointing, and other forms of body language.  Video streams 

could be utilized to capture this type of information, but are not considered in this research. 
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1.3 Document Overview 

The first chapter describes the overall objectives of this thesis and establishes the importance of 

information to the JBI concept.  Chapter II provides an in-depth discussion of background material related 

to this thesis, with focus on JBI concepts, collaborative techniques and technologies, visualization 

techniques and frameworks design.  Jini™ technology is discussed extensively in this chapter to provide 

some background information on why it was chosen as the potential solution for backbone communication.  

Chapter III discusses the problem approach and design of the framework itself.  Chapter IV discusses the 

implementation of the framework and provides examples of its application.  Chapter V summarizes the 

results of the overall effectiveness of the framework along with its impact on the JBI concept.  Chapter VI 

provides conclusions and recommended areas for future research. 
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II. Background 

This chapter provides background information to help in understanding why certain technologies 

and approaches are taken in this research.  This chapter discusses the domain in which this research is 

relevant, along with related research. 

2.1 Command and Control (C2) Domain 

Command and Control (C2) systems are essential for successful completion of military operations.  

C2 can be defined as “the process of gathering information, assessing situations, identifying objectives, 

developing alternative courses of action, deciding on a course of action, transmitting orders, and then 

monitoring execution” [34].  Based on this understanding, C2 systems must have the ability to process 

large amounts of data in a short period of time and present a “big picture” to the commander.  This may 

require collaboration with many units, agencies and services within a battlefield to collect all the necessary 

information.  Information visualization techniques can be used to process immense quantities of data 

quickly and display it in a manner to help commanders understand this data.  In addition, collaboration 

techniques aid the convergence of ideas to a “best” decision more quickly because ideas are being shared 

simultaneously.  These techniques enable command and control systems to collaborate information at many 

levels of command, from the Commander in Chief to the infantry soldier out on the front lines of battle. 

C2 systems also rely on many different types of simulations, which require great amounts of data 

processing.  The outputs of these simulations are difficult to understand due to the amount and complexity 

of the data, so visualization can be performed to make sense of the information.  These visualizations may 

become large in size; thus, the ability to handle transmission of complex information is essential. 

2.1.1 OODA Loop 

A key aspect in any command and control system is the ability to orient oneself to a situation and 

then make a well-informed decision to gain an advantage over an enemy.  Col John R. Boyd generalized 
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this process in 1987, in his paper “Patterns of Conflict” and called it the OODA loop model.  This model 

consisted of four basic steps: Observe, Orient, Decide, and Act (OODA).  This model defines the cognitive 

process of how decisions are made and indicates the activities that go on to produce actions from 

circumstances.  Many branches of military service have adopted this model and incorporated it in their 

command and control doctrine due to its simplicity and completeness.  This model essentially describes the 

functions that C2 systems must provide to commanders to aid in the decision making process. 

As described by Grant T. Hammond, 

Knowledge of the strategic environment is the first priority.  Secondly, one must be able 
to interact with the environment and those within it appropriately.  You must be able to 
observe and orient yourself in such a way that you can indeed survive and prosper by 
shaping the environment where possible to your own ends, by adapting to it where you 
must.  Doing so requires a complex set of relationships that involve both isolation and 
interaction.  Knowing when each is appropriate is critical to your success.  In OODA 
Loop fashion, one must continually observe, orient, decide and act in order to achieve 
and maintain freedom of action and maximize the chances for survival and prosperity.  
One does so through a combination of rapidity, variety, harmony, and initiative.  It is 
these concepts that are the core of ‘Boyd’s Way.’  Rapidity of action or reaction is 
required to maintain or regain initiative.  Variety is required so one is not predictable, so 
there is no pattern recognition for a foe to allow him to know of your actions in advance 
and thus plan to defeat them.  Harmony is the fit with the environment and others 
operating in it.  Initiative—taking charge of your own destiny—is required if one is to 
master circumstances rather than be mastered by them.  All of course, would be focused 
on attaining the specified Objective that is implicit in this discussion.  [25] 

To understand the OODA loop process, each component is described below.   

The first element, (O)bservation, is the process of taking in and absorbing one's 
environment.  This view would be entirely empirical if the observer could guarantee the 
reliability and objectivity of the sensors viewing the environment.  The second element, 
(O)rientation, is the most important step in the loop.  [Orientation is process by which 
data is simulated and processed into information and understanding.  In other words, it is 
the sense-making phase of the model.]  It is the most easily corruptible of the four steps.  
Orientation requires the observer to yield to frail human qualities, such as culture, 
heritage, and, most importantly, previous experience.  This is one place in the cycle 
where there is feedback from previous evolutions.  Orientation may be drastically altered 
based on the experience of success or failure from a proceeding evolution.  The third 
element, (D)eciding, is the cognitive process of selecting a course of action among the 
options that present themselves from the observation and orientation portions.  As Boyd 
[writes], ‘In short we engage in a complex process of analysis and synthesis before 
selecting a course of action … we assess a variety of competing, independent channels of 
information from a variety of domains to cope with the particular circumstance which 
confronts us.’  The final element, (A)ction, is simply doing the course of action selected 
in the decision portion of the cycle; however, in some instances it is the most difficult to 
implement.  [9] 
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Figure 3 shows how each phase works together within the model to produce action from the 

information gathered.  In this figure orientation implicitly provides guidance and control to shape 

observation, decision, and action.  Orientation is in turn, shaped by the feedback and other phenomena 

coming into our sensing or observation window.  This is why the orientation phase is the most important 

and volatile of all phases.  Orientation accounts for cultural traditions, genetic heritage, previous 

experiences, and new information.  Each facet accounts for the different element that affects our 

orientation. 
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Figure 3.  OODA Loop Process [2, 37] 

Cultural traditions and genetic heritage provide rooted experience and customs that form a frame 

of reference from which to orient our minds.  Previous experience provides invaluable historical 

perspective when placing information into context.  Hopefully we learn from previous mistakes and history 

and make decisions based on what worked and what didn’t work.  New information changes the way we 

orient ourselves because it brings new light to the situations at hand.  By having additional information, 

commanders can adjust to the circumstances and ensure that the decisions they make minimize casualties 

and maximize effectiveness. 
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2.2 Visionary Concepts 

To help understand the focus of this research it is imperative to understand the underlying theory 

and vision documents that guide the Department of Defense in accomplishing its mission. 

2.2.1 Joint Vision 2020 

Joint Vision 2020 is a visionary document that describes the Chairman of the Joint Chief of Staff’s 

(CJCS) vision for future military joint forces.  Our military force has a primary purpose to fight and win the 

nation’s wars.  This requires a vision of “Dedicated individuals and innovative organizations transforming 

the joint force for the 21st Century to achieve full spectrum dominance – persuasive in peace, decisive in 

war, and preeminent in any form of conflict” [11].  This enables the United States to protect our interests 

around the world and our nation’s freedoms. 

To achieve full spectrum dominance, the military must continue to invest in and develop new 

military capabilities.  The continued development and proliferation of information technologies will change 

the conduct of military operations.  Our ability to achieve full spectrum dominance makes information 

superiority a key enabler to change the joint command and control system for the future. 

Information was the key to victory throughout history.  However, information superiority is only 

useful when it is effectively translated into superior knowledge and decisions.  “The joint force must be 

able to take advantage of superior information converted to superior knowledge to achieve ‘decision 

superiority’ – better decisions arrived at and implemented faster than an opponent can react” [11]. 

The concept of the global information grid provides a network-centric environment that provides 

global interconnectivity which will enhance combat power.  This information-sharing environment for the 

future will require not only technological advances, but also changes in policy, organization structure and 

doctrines to achieve the goal.  Thus, to help reach the goals set forth in Joint Vision 2020, a mechanism for 

information sharing is needed.  This research focuses on creating a framework that enables an information-

sharing environment. 
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2.2.2 Air Force Vision 2020 

In response to the Joint Vision 2020, F. Whitten Peters, the Secretary of the Air Force, and 

General Michael E. Ryan, United States Air Force Chief of Staff, produced “America’s Air Force 

Vision 2020” [10].  This document provides a vision to how the United States Air Force will meet the 

demands of the future. 

In a world that is globally connected, national security and international stability 
are vital foundations for America’s prosperity.  Assuring security and stability require 
global vigilance, reach and power – global vigilance to anticipate and deter threats, 
strategic reach to curb crises and overwhelming power to prevail in conflicts and win 
America’s wars.  [10] 

With these defined objectives the United States Air Force will realize full spectrum dominance envisioned 

by Joint Vision 2020. 

To meet these objectives requires dedicated men and women who lead effectively at all levels, 

resources necessary to gather information and provide command and control support, and superior weapon 

platforms necessary to accomplish missions.  The goal of this research is to develop support tools that will 

aid leaders at all levels to make good decision and share information. 

“Information superiority will be a vital enabler of that capability” [10].  This goal of information 

superiority requires technology to gather, fuse and integrate new and existing systems to enable 

unprecedented access to information.  “We’ll rely increasingly on distributed (or reach back) operation to 

effectively sustain our forces, providing time-definite delivery of needed capabilities.  Fast, flexible, 

responsive, reliable support will be the foundation of all Air Force operations” [10].  The reliance of 

distributed systems will require all types of collaboration in the future.  This research is geared to help in 

providing a technological solution to visual collaboration for command and control systems and other 

relevant military domains. 
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2.2.3 Joint Battlespace InfoSphere (JBI) 

Information superiority is a recurring theme in the Joint Vision 2020 and the Air Force 

Vision 2020.  As was stated in the introduction, the challenge is “to provide the right information at the 

right time and disseminate or display it in the right way so commanders will act in the right way at the right 

time to defeat their adversary” [57].  Information superiority is essential if this objective is to be met.  

Therefore, the United States Air Force Scientific Advisory Board developed the concept of a Joint 

Battlespace Infosphere (JBI) as the vision for future information systems.  “The JBI is a conceptual combat 

information management system that provides individual users with the specific information required for 

their functional responsibilities during crisis or conflict” [35].  “The Battlespace Infosphere (BI) must 

provide integrated mission understanding, shared awareness, shared planning, shared execution, shared 

visualization, shared support, and [a] shared future view” [35]. 

2.2.3.1 JBI Basic Concept 

The JBI objective is to provide a mechanism to interpret information and make decisions faster 

than the enemy, thereby ensuring information superiority.  Current legacy information systems provide 

much information to today’s combatants, but they are disjoint and poorly organized.  A network-centric 

approach to information systems must be achieved to support joint and coalition operations.   

Network-centric warfare is a first step in the direction of forming a common view of the 
battlespace by ensuring ubiquitous connectivity.  Network-centric systems gain their 
operational advantage by integrating existing planning and warfighting systems via a 
communications network.  The BI extends the concept of the network-centric system.  It 
remains essential that existing and evolving function-specific systems be interconnected 
and able to intercommunicate.  But in the BI, capabilities for intelligent data 
transformation, information exchange, knowledge sharing, and processing provide the 
operational advantage.  [35] 

The BI provides a highly tailored repository of, or access to, information that is 
designed to support a particular geographic area or mission.  The intent of the BI is to 
have a ‘single place,’ a ‘virtual system of information systems,’ that serves as a 
clearinghouse and a workspace for anyone contributing to the accomplishment of the 
operation—for example, weather, intelligence, logistics, or personnel.  The use of the BI 
seamlessly integrates multiple sources of data, enables automated manipulation of data, 
provides faster response times, and produces tailored information to support warfighter 
decision making throughout all functional staff activities.  [35] 
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There are three main broad categories that allow for interaction with the BI: input, manipulation 

and interaction.  Information must be placed in the InfoSphere, followed by its manipulation to create 

knowledge, and finishing with people gaining access to the knowledge.  The basic functions of each 

category are depicted in Figure 4. 
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Figure 4.  Components of Battlespace InfoSphere [57] 

Each element in the BI is an object that encapsulates some information about the battlespace.  

Objects are input into the BI and are made available for manipulation within the BI.  Objects may be 

manipulated in five ways: publish, subscribe, transform, query and control.  Publishing objects makes them 

available to communities for distributed use.  Users wishing to use these object then subscribe to them and 

are thus provided with the information these objects represent.  A transformation operation is needed to 

convert objects from one format to another.  The query capability allows the large repository of information 

stored in the BI to be searched.  Control provides a mechanism to administer and organize the objects.  

These actions provide the mechanism for users of the BI to manipulate the information and gain 

understanding of the battlespace.  This figure shows how input is received via many different forms (i.e. 

Combat Support, Fusion, Planning Execution products, etc.) and compiled into a common representation.  
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The five manipulation mechanisms enable information to be composed into a common format, as well as 

enabling users to interact with the information.  Users interact with the common representation through an 

application that supports different strategies (e.g., Decision-Centric Presentations, Task-Centered 

Information Discovery, etc.), thus enabling the manipulation of information to create knowledge. 

The outcome of this research provides a small piece in the information sharing of the JBI concept.  

This idea of providing mechanisms for users to interact with information is key to the success of the JBI.  A 

framework that supports collaborative visualization will add another capability desired in the JBI.  With 

this framework, task-centered information and data-centric presentation can be aided. 

2.2.3.2 Enabling Technologies 

The vision of the JBI will require many enabling technologies to make this possible.  As one small 

part of the JBI effort, Air Force Research Labs, Information Directorate, Rome Labs is looking into the 

feasibility of integrating military data into a Jini™ based network.  Jini™ technology is a sophisticated 

platform to build network-aware applications.  This technology makes it possible for users to access 

resources located anywhere on the network.  In addition, network resources and devices can join and leave 

the network without any human intervention or manual configuration.  The focus on Jini™ is due to its 

robustness as a network protocol.  The focus of this research will help in this effort by using Jini™ as a 

backbone for a collaborative visualization framework. 

2.3 Application Frameworks 

An application framework is a “reusable, semi-complete application that can be specialized to 

produce custom applications” [18].  Application frameworks describe both the components and how each 

component interacts.  Another definition, described by Gamma, is “a set of cooperating classes that makes 

up a reusable design for a specific class of software.  A framework provides architectural guidance by 

partitioning the design into abstract classes and defining their responsibilities and collaborations” [18]. 
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2.3.1 Object-Oriented Techniques 

Object-oriented (OO) techniques make design and implementation of application frameworks 

much easier.  They allow for the definition of abstract classes or components that provide building blocks 

for an application framework.  OO application frameworks take advantage of data abstraction, 

polymorphism, and inheritance.  Using data abstraction, the framework can present an interface for a class 

and hide all the underlying details.  Polymorphism lets the developer mix and match components, lets the 

object change its collaboration at runtime, and makes it possible to create generic objects that can work in 

many different applications.  Object hierarchies can be developed that give developers the ability to 

customize components from a framework in their specific applications. 

A common observation made about framework design is that it takes iterations to fully reach the 

maturity of its intended purpose.  Additional information is inevitably discovered later in the development 

process, which leads to iterations.  Frameworks usually implement the explicit parts of the design that are 

likely to change, forcing iterations to occur.  Frameworks are generally large sets of generic components 

that are collected and developed over time from sets of desired functions to suit the needs of a problem.  It 

is impractical to analyze and design every conceivable scenario prior to implementation.  Current trends are 

to build the framework iteratively by adding additional capabilities and components later on in its life 

cycle [18]. 

2.4 Collaboration 

For purposes of this research, collaboration is defined as “two or more geographically dispersed 

individuals working together to share and exchange data, information, knowledge, and actions” [36].  The 

product of collaboration is loosely defined and may include a decision, a document or any outcome from 

the interaction between the collaborants.  “A collaborant is a resource that participates in a collaboration 

and that can reason about and take action on the state of evolution of the products and processes” [44].  The 

collaboration environment consists of the necessary resources to allow for communication between 

individuals to take place. 
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This research focuses on the development of a collaboration framework, which is “the necessary 

and sufficient set of standards-based computing and communication infrastructure, and collaboration 

support services used to develop and execute instances of a collaborative environment” [44] that supports 

visualization. 

2.4.1 Types of Collaborations 

2.4.1.1 Asynchronous Collaboration 

Jason Wood presented the idea of asynchronous collaboration visualization in which people 

interact at different times, in different places…such as when sending email messages or leaving messages 

on a bulletin board [59].  This type of collaboration may be more indicative of development environments 

and business practices, but is not necessarily the best approach for C2 systems. 

2.4.1.2 Synchronous Collaboration 

Most C2 systems are manned 24 hours a day, 7 days a week, and have the need for synchronous 

collaboration with immediate responses.  The immediate response and direct interaction between 

collaborants is the big difference that distinguishes asynchronous from synchronous collaboration systems. 

2.4.2 Levels of Collaboration 

Asynchronous and synchronous collaboration can be achieved at several different levels.  This 

may range anywhere from the data level to the view level.  Data collaboration uses raw data to 

communicate information from one place to another, such as, sharing a file over a network.  View 

collaboration is sharing a visual representation to communicate ideas and information between 

collaborants, such as, sharing an external window with another computer.  Figure 5 shows the different 

levels of collaboration that can occur.  An example of data abstraction is the sharing of data objects or 

structures.  Likewise, the visual abstraction is the sharing of visual objects that compose the view. 
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Figure 5.  Levels of Collaboration 

Most collaboration systems currently use the data abstraction level to enable collaboration 

between users.  The primary use of data abstraction is to create message objects that hold some information 

about the collaborative components.  These messages are passed back and forth amongst the collaborants 

and form the basis for collaboration. 

2.4.3 Elements of Collaboration 

Many elements are required for effective collaboration.  Gutwin and Greenberg [21, 22] identified 

several mechanisms of collaboration that must be present when working in a shared workspace.  They are: 

explicit communication, consequential communication, coordination of action, monitoring, and protection. 

• Explicit Communication:  Verbal and written communications are the cornerstone for sharing 

information in a collaborative environment.  Within a visual workspace, the workspace and the 

artifacts themselves are critical in enabling explicit communication to take place. 

• Consequential Communication:  In addition to explicit communication, great amounts of 

information are transmitted and picked up unintentionally as people go about their activities.  The 

manipulation of objects from within a collaborative session produces two kinds of information: 

consequential communication and feedthrough.  “Consequential communication is the visible or 

audible signs of interaction with a workspace” [23].  For example, watching someone work 

provides clues about their actions.  “Feedthrough is the observable effects of someone's actions on 
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the workspace's artifacts” [23].  For example, seeing an object move indicates that someone is 

moving it. 

• Coordination of Action:  To avoid conflicts within a shared environment, participants must take 

turns.  In addition, some tasks may require a sequence of events to take place in a certain order.  

Thus, it is imperative that collaborants can organize their actions within the shared workspace so 

conflicts do not arise.  This implies that some type of control mechanism must be in place to give 

control of the shared workspace to users. 

• Monitoring:  Almost all other mechanisms for collaboration rely on the ability to monitor and 

collect information about others in the workspace.  Workspace awareness information, such as 

who is in the workspace, where they are working, and what they are doing, is primarily the 

information needed to enable collaborants to make progress on tasks and effectively work 

together. 

• Protection:  One obvious potential problem with a shared workspace is the inadvertent altering of 

work by another in the workspace.  Thus, people must be courteous of others’ work and not 

inadvertently destroy someone else’s work.  In addition, mechanisms for locking different 

elements or regions of the shared workspace with passwords may be necessary to provide 

adequate protection to a user’s work. 

2.5 Information Visualization 

Information visualization is a proven concept used to help in understanding information.  This 

section discusses the process of understanding and relevant visualization techniques that are useful in 

aiding understanding.  The framework to be developed should support information visualization. 
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2.5.1 Knowledge Crystallization 

Card, MacKinley and Schneiderman [4] present the idea of knowledge crystallization, which is the 

process by which we gain understanding of information.  It is similar to Boyd’s OODA loop and it assumes 

five simple steps.  The steps are:  

• Information foraging 

• Search for schema 

• Instantiate schema 

• Problem-solve 

• Author, decide or act 

During any one of these steps, certain tasks are performed to aid in the cognition of that particular step.  To 

help understand some tasks that may be performed in this process, some techniques employed in 

information visualization are discussed. 

The first step in the process is to forage for information.  The primary reason is to gather enough 

data to be able to make some sense of the data.  Visualization techniques (e.g., navigation techniques) are 

proven in aiding the forage for data.  These techniques allow a user to interact with information to gather 

bits and pieces of facts that will help solve the task or problem at hand. 

Once the data has been gathered, making sense of the information follows.  This involves a 

process of mapping the information to a meaningful representation (schema) so it makes sense in human 

minds.  If data does not map well to a particular schema, the search for a more suitable schema should 

proceed, thus producing a schema that can abstract the information so it can be managed and processed.  

Some techniques that are used to instantiate schemas are: reorder, cluster, classify, average, promote, and 

pattern detection. 

With the data mapped to a local representation, the process of problem solving can commence.  

This is the process of instantiating solutions and comparing the effectiveness of the potential results.  

Visualization techniques that are used are: read fact, read comparison, read pattern, manipulate, create and 
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delete.  As irrelevant information is deleted, reorganized and compared, solutions to problems are more 

easily apparent. 

Once the problem-solving phase reduces the number of solutions, the last step is to take action.  

The action does not always have to require a decision or action, but may include a report, a briefing or 

another type of document that composes information. 

This knowledge crystallization is used in all domains, and information visualization techniques 

have proven very useful in helping the human cognitive process come to resolution more quickly.  Patterns 

are more easily seen and information is presented in a way that allows the human to make sense of the info 

and see how it fits in context of a problem.  Several techniques are discussed to demonstrate the usefulness 

of these techniques in knowledge crystallization. 

2.5.2 Maps 

Almost everyone has used a map to navigate from one place to another.  The primary advantage of 

maps is that they provide a high density of information in a small space.  Distances can be calculated, and 

size of cities and political boundaries can be assessed and considered when making decisions.  Many times 

within the C2 community, political boundaries must be understood and taken into consideration when 

deciding on a manner to attack an enemy or diffuse a situation.  Maps can provide this type of information 

at a glance.  Imagine trying to understand a nation’s political boundaries, just by looking at raw latitude and 

longitudinal data.  The visualization provides an image of the political boundaries around nations and 

states, so the user only has to glance at a picture to gain an understanding. 

2.5.3 Symbols 

Symbols or Glyphs are another important visualization technique that is used within the C2 realm.  

“Glyphs are graphical objects or symbols that represent data through visual parameters that are either 

spatial, retinal, or temporal” [8].  Symbols abstract information into simple meaningful entities.  Some may 

argue what “meaningful” truly is, but within the C2 community, certain symbols have evolved to represent 
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information.  These glyphs may not be the most intuitive or best-designed symbols, but they do provide an 

abstraction (e.g., infantry, artillery) that can be composed to aid understanding. 

Within the C2 community, common symbols are composed of three components: an icon, a frame 

and a fill.  Icons are glyphs that represent units, location or equipment.  To illustrate this, Figure 6 provides 

an example of two different units.  The following symbols and charts are taken from the United State Army 

Field Manual 101-5-1 [12]. 

This figure shows two icons, one being a flag annotated with TOC, and the other being a square 

with a dot in the middle.  In our culture, the flag has an understood meaning of some type of headquarters 

or an important unit.  In this case, the flag is annotated with the use of a label (TOC) to indicate that it is a 

Tactical Operations Center.  The other symbol is an artillery division.  The X above the artillery division 

indicates its size.  The X represents a Brigade; thus, this unit may have many subordinate units within it.  It 

is arguable how intuitive these symbol are, but these symbols have been used for years and have become 

part of the C2 community and are understood within that domain.  The use of labels is discussed in the next 

section, but it is important to point out that if there were no label associated with the icon, it would be very 

difficult to distinguish one icon from another.  These icons provide an abstraction to be used on a map that 

hides the details from the user.  These details could be explored by using a drill-down technique that is 

discussed later, to find more information about these units. 

TOC

Tactical Operation Center (TOC)

TOCTOC

Tactical Operation Center (TOC)

X

Artillery Division

XX

Artillery Division  
Figure 6.  C2 Symbols Example 

The next component of a common C2 glyph is the frame, which consists of primitive shapes and 

symbols that present affiliates.  Table 1 shows a representative group of frames that are used within the C2 

community.  These frames are “role indicators” that show the warfighting function the unit performs either 

on the ground, air, or at sea. 
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Table 1.  Unit, Installation, and Site Symbol Frames [12] 

The last component of the glyph is the fill, which refers to the area within a frame.  The fill is 

usually filled in with color, but does not have to be used.  Color is discussed in a later section. 

2.5.4 Labels 

As was mentioned above, labels are a critical element to be used with symbols.  In Figure 6 it is 

impossible to tell what artillery division this is.  To avoid this ambiguity, labels are used to indicate unit 

designation.  These labels provide additional information about the unit to help paint the bigger picture. 

Labels are also needed to point out landmarks and other relevant items on a map.  Imagine trying 

to look at a map with none of the cities or highways labeled.  It would be difficult to find information and 

understand it, especially for one unfamiliar with the landscape.  To resolve this problem, labels are used to 

provide visual cues about location.  This allows individuals to understand context more quickly and then 

orient themselves to the situation. 

2.5.5 Color 

Color is a very useful technique when trying to distinguish and group objects.  Making common 

objects look the same can have important meaning and provide additional abstract information.  Examine 
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the use of color to show highway types.  On a common street map, principal highways are usually red, 

while interstates are blue.  This is very helpful when these roads intersect, because it enables one to follow 

the roads without getting lost in the intersection. 

As mentioned above, the fill of a symbol is usually done with color.  Color indicates affiliation.  

The C2 community has a standard color representation, shown in Table 2.  By using these colors, 

additional, but possibly redundant, information is presented.  Overall, the use of color is very helpful in 

distinguishing one object from another.  On a map, coloring the land green and the sea blue makes it easier 

to see the distinction of information on the display.  Plus, the use of color makes a display much nicer to 

look at and easier on the eyes if used appropriately. 

Color Affiliation 
Hand-Drawn Computer-Generated 

Friend, Assumed Friend Blue Cyan 
Unknown, pending Yellow Yellow 
Neutral Green Green 
Enemy, Suspect, Joker, Faker Red Red 

Table 2.  Color Representation [12] 

2.5.6 Interaction 

Another key visualization technique is being able to interact with data.  It is nice to see the 

information in a big picture, but if additional data is needed, there must be ways to obtain the data easily.  

Some techniques that allow users to interact with data, such as drill-down, filtering and zoom, are discussed 

next. 

2.5.6.1 Overview and Detail 

Overview and detail allows the user to interact directly with the data to request more detail, while 

maintaining a high level view.  By so doing, more variables can be shown about the information, which 

aids understanding. 
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An important aspect of this technique is the ability to drill down or obtain details-on-demand.  

This capability allows users to obtain additional information by displaying more details in different views.  

In the C2 community, this enables getting information about units and equipment very easily.  Especially 

on the logistics side of C2, the commander must understand what each unit is supplied to do.  If a mission 

were going to take a certain amount of ammunitions, it would be wise to see if that amount of resources is 

available.  Additionally, the commander may want to know who is the most suited for the task, based on 

their current supply and status.  Thus, by providing the commander with additional details about a unit, the 

best decision can be made. 

2.5.6.2 Filtering 

Many data points may be overwhelming to any commander.  Thus, the ability to mask 

unimportant data and focus on relevant information is imperative while trying to forage for data.  Thus, by 

eliminating extraneous data, more time and attention can be given to the smaller subset of important data.  

With fewer things on one’s mind, the cognitive process is achieved more effectively. 

2.5.6.3 Zoom 

The zoom capability enables users to focus in on specific details of a view by enlarging a section 

of the view.  This visualization technique allows users the ability to enlarge the view to extract additional 

information at a smaller level of granularity.  This capability allows the user to zoom in for more detail and 

zoom out to access the big picture.  This technique helps achieve understanding of information. 

2.6 Distributed Systems 

Collaborative systems enable multiple clients to share common views or data to accomplish a task.  

This, in essence, is a distributed system of clients working together to solve a problem or task.  By making 

this parallel, it becomes apparent that there are many complexities that come into play to facilitate 

collaboration. 
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Peter Deutsch recognized the challenges of distributed systems over that of classical standalone 

systems and wrote “The Seven Fallacies of Distributed Computing” [13].  He added, “Essentially everyone, 

when they first build a distributed application, makes the following seven assumptions.” 

• The network is reliable 

• Latency is zero 

• Bandwidth is infinite 

• The network is secure 

• Topology doesn’t change 

• There is one administrator 

• Transport cost is zero 

Some additional assumptions to consider are: 

• The network is stable 

• Resources are infinite 

• The network is homogeneous 

“All prove to be false in the long run and all cause big trouble and painful learning 

experiences” [13].  Distributed systems must implement mechanisms to handle these issues.  An effective 

and efficient collaborative framework is no different and must handle these types of concerns.  A few 

distributed concepts such as performance and latency, failures, concurrency and consistency are briefly 

discussed to provide some background information. 

2.6.1 Performance and Latency 

Clearly accessing resources – data or files – over a network is slower than accessing them locally.  

In some cases the difference may be orders of magnitude, which in turn affects the overall performance of 

an application.  This difference in performance, in a distributed system, becomes an issue due to the 

inability to distinguish a failed component from a slow component.  Thus, the problem of handling failures 
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improperly is perpetuated.  The performance of a network may vary greatly within a short span of time.  

This is evident if one has ever surfed the web.  Thus, a distributed system must be able to handle a variety 

of network conditions.  Developers of distributed systems often overlook and even ignore performance and 

latency concerns because remote accesses are made to look like local ones.  This results in applications that 

have communication patterns that are unacceptably slow, or not very robust in a distributed environment. 

Instead of ignoring the issues of “remoteness” of component, it must be considered in the 

architectural design of the system.  This ensures that interfaces for communicating between objects are 

designed, resulting in acceptable performance measures. 

2.6.2 Failures 

Network systems fail in ways stand-alone systems cannot: routers go down, ethernet cables are 

pulled out of machines, switches are reset, and key servers can crash.  These failures may be short-lived or 

may cause long outages.  Code must be written that can handle these types of failures.  The difficulty with 

this is that the errors may be difficult or impossible to detect.  The reason for this difficulty is because 

distributed systems usually have no centralized entity that can be used to determine success or failure of 

actions. 

In distributed systems, individual components can fail in ways that leave other components 

running, often unaware of their failure.  This situation is called partial failure, and is the cause of most of 

the problems associated with distributed computing.  Total failures are actually easier to deal with because 

the system ends up in a known state (i.e., up or down). 

2.6.3 Concurrency and Consistency 

Partial failures usually cause consistency problems.  For illustration, consider the example of a 

shared whiteboard application that allows a set of participants to manipulate a shared drawing space.  When 

one user makes a mark, the update must be propagated to all users in the session.  If one recipient’s 

computer becomes unreachable for a short time and the update is not processed, the participant’s screen 
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may be in an inconsistent state.  This would result in participants being out of sync with the rest of the 

workgroup.  Additionally, several participants may be manipulating the shared drawing space at the same 

time, which causes concurrency problems.  Partial failures and consistency are the real showstoppers for 

distributed computing.  They are difficult to detect and require tremendous overhead to solve. 

Early collaboration applications used floor control (e.g. one user interacting at a time) to prevent 

concurrency problems [17].  Later models or approaches dispensed with any type of concurrency control, 

relying on social protocols and global awareness to prevent conflict; however, according to Munson et 

al [39], social protocols and global awareness methods are not acceptable in many situations.  Thus, some 

type of floor control mechanism is best suited to solve the concurrency problem. 

To help solve the problem of concurrency and consistency, transactions can be used.  Transactions 

ensure that complex operations will reach a “safe” state.  That is, the operations either all complete, or none 

of them complete.  This mechanism can be used to help avoid partial failures in distributed systems, to help 

handle concurrency and consistency issues, and to provide robustness and resiliency to network failures. 

2.7 Enabling Technologies 

Previous research has found the use of Sun Microsystems JavaSpaces™ to be useful in the 

development of a collaborative visualization framework [3, 27].  However, this research goes beyond 

JavaSpaces™ to look at the applicability of core technologies of Jini™ for collaboration. 

2.7.1 Jini™ 

Jini™ technology was released to the public in early 1999.  Mark Stang and Stephen Whinston of 

Xor Incorporated summarize Jini™ Technology in their article “Enterprise Computing with Jini™ 

Technology” [49].  The great power behind Jini™ is its capability to give network devices self-

configuration and self-management capabilities.  These capabilities enable network devices to 

communicate immediately on a network without any human intervention.  Jini™ technology was developed 

as a sophisticated platform to build network-aware applications.  This technology makes it possible for 
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users to access resources located anywhere on the network.  In addition, network resources and devices can 

join and leave the network without manual configuration.  This technology provides several advantages, 

such as reliability, scalability, maintenance, and security, when trying to create a network-aware 

application. 

Reliability is the measure of how well a device or network operates when there are disturbances.  

Processes, services, and machines start and stop and sometimes even crash.  Jini™ technology can handle 

these types of changes because it was designed to have resources move in and out of a network.  The way it 

works is similar to the way machines communicate over the Internet.  Between two machines there are 

many different paths they could take to communicate.  So, if a problem occurs with one path, another path 

is taken.  Similarly, when a server, or resource becomes unavailable on a Jini™ network, the client 

automatically goes searching for another server that provides the needed service, or waits for the server to 

come back up.  This functionality is built into the Jini™ architecture and remains transparent to users. 

“A system is scalable if the overhead required to add more functionality is less than the benefit the 

functionality provides” [49].  Adding additional Jini™ services to the network provides more choice to 

clients on which services they can communicate with.  Adding more devices that provide the same service 

increases system reliability.  Jini™ networks have no central control, which permits the networks to be free 

and manage themselves.  This allows for services to be added and removed with little to no effort.  The 

ability to dynamically discover services makes Jini™ networks fluid, meaning they change dynamically 

without affecting existing services. 

Maintainability and administration are some other key advantages to Jini™ networks.  With the 

ability to find the network components that make up applications, location of a source is hidden from the 

client.  Additionally, the network is self-maintaining and does not need manual configurations.  Jini™ 

makes fail-overs much easier to implement.  For instance, a back-up server may be running, and when the 

primary fails, it changes its IP address and takes over the workload.  This is possible because when a Jini™ 

server fails, a Jini™ client automatically searches for another instance of the service to finish the work. 
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Security is always critically important in any system, especially in the C2 realm.  Jini™ software 

prevents unknown clients from accessing protected services.  Additionally, it can prevent remote clients 

from even seeing services that are offered by the network.  Jini™ servers maintain and transmit the client 

code needed to interface with a particular service.  Prior to any code being moved, the Jini™ environment 

must satisfy the client’s security policy, which defines the trusted machines and all security parameters. 

Jini™ uses a service-based model to enable the sharing of resource across a network.  “A service 

is a fundamental concept in Jini™ technology and represents an entity that users can access over a 

network” [49].  Services can be any entity that is abstracted through software such as printers, storage 

devices, and software components.  These services advertise their availability and capability through 

lookup servers that clients use to discover and access services. 

To make services available to clients several steps are followed (reference Figure 7).  First, the 

service is bound to a Lookup Server.  The Service Provider publishes its service interface or proxy code to 

the Lookup Service.  The Service Provider may publish its service interface to any number of Lookup 

Services, thus providing redundancy if any Lookup Server were to fail.  Second, the Service Requester 

performs a lookup to locate the Lookup Service.  Once found, the Service Requestor asks the Lookup 

Service for a particular service by using a unique name.  If the requested service is registered with the 

Lookup Service, it returns the proxy code, which was stored in the Lookup Service.  Otherwise, it returns no 

match for the requested service.  With the proxy code now accessible to the Service Requestor, it now 

knows how to communicate with the Service Provider.  The last step is simply the communications 

between the Service Requestor and the Service Provider via the proxy. 
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Figure 7.  Jini™ Service Model [55] 

The Jini™ service-based model is simple and provides great flexibility by allowing clients access 

to capabilities across a network.  To implement this model, Jini™ technology uses five key concepts.  

These concepts, as described by W. Keith Edward, author of Core Jini™ [16], are: discovery, lookup, 

leasing, remote events, and transactions.  These concepts provide the ability for Jini™ to support 

spontaneously created, self-healing communities of network services. 

2.7.1.1 Discovery 

Discovery is the process by which services find and join communities to advertise their 

availability.  When a Jini™-aware application or service wishes to make itself available to users, it goes 

through the process of joining a community.  It first must perform a discovery to find the lookup services 

and then joins them by using operations on the lookup service references that are returned by the discovery 

process.  Once the service joins a lookup service, the service become available to use by other services and 

applications. 
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2.7.1.2 Lookup 

Lookup fulfills the role of a directory service and provides the resources for searching and finding 

known services.  Thus, it keeps track of all services that have joined a Jini™ community.  It also controls 

how code is transmitted to clients wishing to use a particular service.  The sections of code that are 

downloaded to clients are called the proxies and they define the interfaces to the services the client use. 

2.7.1.3 Leasing 

Leasing is the technique that provides the self-healing characteristics of Jini™.  It will ensure that 

a community will recover from a failure of a key service.  Access is granted to a service to exist on the 

lookup server for a fixed period of time.  If that service does not attempt to renew its lease, the service will 

be dropped from the Jini™ community, thus eliminating the references to stale resources on the network. 

2.7.1.4 Remote Events 

Remote events are the mechanism used by Jini™ to allow services to notify other services of 

changes.  Since lookup is a service, it can notify other interested parties of changes made to the available 

services. 

2.7.1.5 Transactions 

Transactions are the mechanism used by Jini™ to ensure that computations that require more than 

one service terminate processing in a “safe” state.  In other words, the group of commands or computations 

must be completely executed together as a group for the result to be considered valid.  This provides a way 

to “cluster” operations together to give the appearance of all the commands executing as a single command.  

Thus, the user can be sure that the sequence of actions completed successfully, or none of them completed, 

thus maintaining the system in a safe configuration. 

There are three main parties involved in Jini™ transactions: the transaction manager, the 

transaction participant, and the transaction client.  The transaction manager is just another Jini™ service 
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that implements the two-phase commit protocol [41] when requested.  The two-phase commit protocol is a 

well-known database protocol that ensures operations either commit or abort.  The transaction manager 

maintains a list of all participants for each transaction and sends messages to participants telling them to 

move to a different stage.  Essentially the transaction manager is only in charge of ensuring that the two-

phase protocol is followed. 

The second party is the transaction participant.  It is essentially a program that performs operations 

that are grouped together in a transaction.  Participants must implement the TransactionParticpant 

interface. 

The last party is the transaction client.  It is the entity that initiates the entire process.  It does not 

need to implement any interface.  Its responsibilities are to instantiate Transaction objects, and ensure the 

transaction either commits or aborts. 

2.7.2 JavaSpaces™ 

JavaSpaces™ is a service built on top of the Jini™ architecture that creates and maintains a 

database of Java objects.  This mechanism facilitates group communication or collaboration through the 

sharing of Java objects. 

JavaSpaces™ uses the standard Jini™ lookup to store and retrieve objects.  The standard lookup 

uses the Entry interface to facilitate the searching for objects.  The Jini™ documentation provides the 

following information about the Entry interface [55].  The Entry interface is the supertype of all entities 

that can be stored in a Jini™ Lookup service.  Specific Entry objects implement the Entry interface and 

may have any number of methods or constructors.  Each field in an Entry object must be a public reference 

object type.  Each field is serialized separately, so references between two fields of an entry will not be 

reconstituted to be shared references, but instead to separate copies of the original object.  To illustrate this, 

Figure 8 provides a simple example of an Entry object that has two attributes pointing to the same object 

prior to serialization.  After serialization, the attributes now have two separate copies of the original object. 
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Figure 8.  Entry Before/After Serialization [16] 

Unlike relational databases, neither primary keys nor tables are needed to store or search for 

objects.  Objects can be located by performing a lookup on names or any set of attributes of the object.  

Typical relation databases use the CRUD (create, read, update, and delete) paradigm to operate on data.  

Mark Stang, et al [49] showed how JavaSpaces™ uses three operations to map to the CRUD model: write, 

read, and take.  Write performs the create and update functions, read maps to the read function, and take 

combines read and delete functions. 

The take operation is used when a user wants to lock an object in the database.  This actually 

removes the object from the space and makes it unavailable to other users.  The take and read operations 

block until a matching object is available in the JavaSpace; however, a timeout parameter can be set to 

curtail the amount of time the operations wait.  If the service dies after taking or locking an object, the 

object could be lost.  To prevent this, JavaSpaces™ uses the transaction mechanism whenever a take is 

performed.  Thus, if anything happens to the service, the object will be restored to its original state prior to 

the take action. 

The use of JavaSpaces™ typically follows the following simple steps.  First, applications or 

classes use the write method to place objects to the JavaSpace; they also remove them from the JavaSpace 

by using the take operation.  Upon completion of the processing on the object, the object is written back to 

35 



 

the space using the write operation.  Applications then use the read operation to access needed objects.  

Figure 9 depicts the JavaSpaces™ operations in actions. 

 

Figure 9.  JavaSpaces™ Operations [19] 

There are additional operations that are defined by the JavaSpaces™ interface, which are: 

readIfExists, takeIfExists, and notify.  The first two, readIfExists, and takeIfExist, are exactly like their 

counterparts read, and take with the following exception: they will return a null if a matching entry does 

not exist and blocking in these calls are done only if necessary to wait for transactional states to settle. 

The notify operation provides the mechanism for the JavaSpaces™ to notify a listener if an object 

matching a template has been written to the space.  “The method takes an Entry as a template that will be 

matched against future writes to the JavaSpace.  If a new Entry is written that matches the template, an 

event will be sent to the listener specified in the notify call” [16]. 

JavaSpaces™ Principles, Patterns and Practice [19] describes some useful properties of 

JavaSpaces™ that makes it a good candidate for a collaborative distributed system.  These properties are 

summarized here: 

• Spaces are shared by allowing multiple processes to interact with a JavaSpace at the same 

time.  The concurrency issues associated with shared access are handled internally by the 
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JavaSpaces™ API, eliminating the need to write extensive concurrency control routines to 

handle these issues. 

• Spaces are persistent, meaning that objects can be reliably stored in a JavaSpace.  If an object 

is stored in a JavaSpace, it will remain there indefinitely until it is removed.  Leases can be 

requested to indicate the duration of storage for the object.  When the lease expires, the object 

is removed from the JavaSpace. 

• Spaces are associative by enabling programmers the capability of locating objects in a 

JavaSpace with knowing the name or the location of the object.  Objects are found using 

template objects that contains desired values/properties to search the JavaSpace.  The 

JavaSpace matches these templates with objects in the JavaSpace and returns them.  This type 

of associative lookup gives the programmers great flexibility by enabling them to write 

programs without knowledge of names or locations of other components of the application. 

• Spaces allow transactions by using the Jini™ transaction service to guarantee that operations 

are atomic (that is, either all of the operations are applied, or none of them are applied).  

Transactions are essential in detecting and handling partial failure. 

• Spaces allow the exchange of executable content.  Objects in a JavaSpace are passive data, 

meaning they cannot be modified or invoked inside the JavaSpace.  However, programmers 

can easily take an object from the JavaSpace, create a local copy and modify its public fields, 

as well as invoke its methods. 

2.8 Related Research 

Many approaches for collaboration frameworks have been attempted.  Throughout time the 

frameworks have become more robust and provide more functionality and better performance. 
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2.8.1 NCSA Habanero 

The National Center for Supercomputer Applications (NCSA) developed a collaborative 

framework called Habanero [7].  This framework is written in Java and operates by sharing actions or 

semantic events to multiple copies of Java applets or applications.  These applications are replicated across 

clients that are connected to a particular session.  Habanero ensures that all clients see the actions in the 

same order, which results in all of the applications appearing the same on each client.  Programmers are 

given the flexibility to define what events are considered to be state changing and thus create actions to be 

sent to all clients. 

Habanero also provides a general floor control or session controlling object, called an arbitrator.  

The arbitrator controls which events can be performed at a given time.  The student-teacher arbitrator is a 

good example.  This arbitrator only allows the privileged person (the teacher) to initiate actions.  Thus, all 

the students become observers and only see the actions performed by the privileged user.  Another example 

is the turn-taking arbitrator, which requires events to be initiated in order by each participant.  Developers 

can also define their own arbitrators.  Currently these arbitrators make TCP/IP socket connections to each 

client, which does not scale very well when there are a large number of clients. 

Habanero also provides a collaborative environment to support the session management process.  

This environment allows users to create, join, leave and browse sessions.  In addition, Habanero provides a 

suite of tools, e.g., Chat, Whiteboard, and others that are used to support collaboration between 

individuals [6].  A limitation to Habanero is that it requires applications to be predefined as shared tools 

and does not allow dynamic addition of applications [58].  Additionally, it is not very robust in being able 

to handle system failures. 

2.8.2 DISCIPLE Framework 

Ivan Marsic, et al developed a component-based framework centered on the JavaBeans™ 

architecture [32, 33].  The main characteristic of DISCIPLE (DIstributed System for Collaborative 
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Information Processing and LEarning) is a three-tiered architecture: presentation, application logic, and 

storage [58]. 

The reason for focusing on JavaBeans™ is that JavaBeans™ represents a strong software industry 

trend for standardizing software development through components.  Components enable the speedy 

development of software using third party software components.  In addition, JavaBeans™ help maximize 

the ability to decouple the communication and group aspects of collaboration from the application 

itself [33]. 

Like Habanero, DISCIPLE is also based on the replicated architecture of groupware.  Therefore, 

each client runs a copy of the collaboration client and contains a copy of the application that is being used 

to collaborate.  Thus, each application is kept in synch by the framework passing events to each application 

to make them appear to be in the same state [58]. 

DISCIPLE provides components that manage collaborative functions, such as concurrency control 

of simultaneous activities, degree of sharing of the application (coupling), and degree of group awareness 

within the environment [58].  Collaboration takes place in sessions, which are virtual rooms that enable 

users to work together.  In addition, this framework has several tools that can be used to support 

collaboration: whiteboard, collaborative mapping, speech signal acquisition and processing, and image 

analysis tools.  However, this framework does not handle system failures, nor does it provide flexibility to 

application developers to customize components in the collaborative framework. 

2.8.3 COAST 

The COAST (COoperative Application Systems Toolkit) provides developers with an architecture 

to support cooperative applications [47].  Like Habanero and DISCIPLE, COAST also uses a replicated 

architecture approach.  Each application operates on exactly one document; thus, the data is fully replicated 

to each client application. 
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Users access the shared document via a session object.  “Session objects provide group awareness 

and specific coupling of shared document aspects between concurrent users” [47].  The coupling can be 

used to implement specific cooperative modes (e.g., private, loose, tight).   Users interact with the shared 

documents through views (visualizing the document in a windows) and controllers (processing user input 

from the window).  Thus each view and controller object accesses the shared object through the session 

object.  This concept is the well-known MVC (Model/View/Controller) [31] programming design pattern.  

This pattern decouples the functionality of the model, view, and controller to increase flexibility and reuse.  

This approach allows collaborating users to have multiple views of the same underlying data model [20]. 

COAST explicitly addresses the problems of object sharing, session management, and view 

updating.  The session manager, transaction manager, replication manager, view, and control objects 

perform these functions; however, this design does not support an asynchronous mode of sharing objects.  

In addition, the fully replicated approach limits the size of the shareable objects. 

2.8.4 ColVis 

Sean Butler developed a framework called ColVis (Collaborative Visualization) as a 

demonstration of concept to demonstrate the feasibility of JavaSpaces™/Jini™ in a collaborative 

environment [3, 27].  The ColVis “framework provides communications management and message support 

and well-defined Java class interfaces for integrating visualization components” [27].  This framework does 

demonstrate that JavaSpaces™ can be used to share Java objects; however, the implementation is limited 

because the Java objects are not truly shared.   

The framework uses a message object to pass messages to the JavaSpace, which is then accessed 

by each client.  By taking this approach the developer must embed code that processes the messages in each 

new collaborative application.  The framework handles the sending of the messages, but the developer is 

required to implement code that will pack and unpack messages to create the desired collaborative action. 
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Another limitation of this framework is the coupling of the communications and the user view and 

interactions.  They are tied together in a lower level visualization components, and do not lend themselves 

well to maintainability and flexibility. 

2.9 Background Summary 

In summary, the visionary documents provide the background for why information superiority is 

so important in today’s military environment.  Obtaining information is of no use unless knowledge can be 

extracted from it.  Collaboration and information visualization are important elements that help information 

become knowledge.  In the command and control community, this knowledge will influence decisions.  

Well-informed decisions will hopefully minimize casualties and maximize military objectives. 

Several distributed systems concepts are presented to help motivate the challenges that are 

associated with building a collaborative framework.  The use of Jini™ and JavaSpaces™ technology help 

overcome these challenges by providing developers with mechanisms that internally handle the distributed 

concerns.  Additionally, these technologies enable the sharing of Java objects throughout a shared 

workspace. 
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III. Methodology and Design 

This chapter discusses the methodology and design used to address the objectives of this 

collaborative research.  It describes the success criteria for the research and outlines the architecture used in 

the design of the collaborative framework. 

As stated in Chapter I, the goals of this research are to create a generic framework that supports: 

• Shared interaction – the collaboration between geographically separated users interacting with 

data and visual representations to accomplish tasks.  The characteristics used to measure this 

goal are: shared state, data consistency, communication, coordination of action, monitoring, 

and protection. 

• Visual sharing – remote users collaborate at a higher level of abstraction than the data through 

the sharing of visual objects.  The criteria established to measure the effectiveness of this goal 

are visual consistency and visual collaboration. 

• Remote code access –users access remote data and applications without the need for previous 

installation.  Dynamic loading is used to measure the effectiveness of the framework in 

meeting this goal. 

• Easy tool integration – flexibility to easily integrate any Java tool and make it collaborative.  

To measure this goal the following criteria are used: generality, automation, and coupling. 

• Facilitate software development – the purpose of a framework is to ease the burden of 

developers in developing software.  The following characteristics are defined to measure the 

capability of the framework: scalability, robustness, standard language support, and 

flexibility. 
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These overarching goals are used to define and guide decisions made during the framework 

development process.  The choices made in developing this collaborative framework require the addressing 

of complex issues such as: system architecture, distributed system concerns, and global awareness. 

3.1 Collaborative Framework 

Most collaborative applications today have code that is specifically written to provide the 

collaborative functionality desired in the application.  This paradigm couples the application code to the 

collaborative framework, thus forcing every new application to implement similar collaborative constructs.  

This approach seems to be effective, but creates excessive burdens on application developers to add 

collaborative features to each new application. 

This research uses a generic approach to try and build a framework that would take any Java™ 

application and make it collaborative in nature.  This generic approach decouples the application from the 

collaborative software, thus eliminating the need for the application to implement distributed system 

concepts and making it easier for developers to create new applications. 

3.1.1 Criteria 

A review of related work [5, 18, 20, 22, 23, 32, 59] has revealed certain characteristics that are 

desirable in a collaborative framework.  These criteria encompass characteristics for a good software 

framework, as well as characteristics needed to effectively collaborate with geographically separated 

individuals. 

• Generality:  By producing a general solution the application of the framework can benefit more 

people and be used across many domains.  This characteristic allows the use of a single framework 

to develop domain-independent collaborative applications, providing flexibility and reuse.  Using 

a single framework to support many different domains eliminates the need to learn a new system 

to create a collaborative system in other domains. 
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• Automation:  Automation is the spontaneous support of making an application collaborative with 

minimal intervention from the developer.  The level of automation can be measured by the 

“developer’s effort [required] to achieve multi-user behavior with respect to a single-user 

case” [46]. 

• Shared State:  All clients in the collaborative environment must remain synchronized.  A common 

approach to maintain synchronization is to share a common state model.  This synchronized state 

may be maintained in any number of ways; however, since the goal is to allow for interaction with 

both data and visual representations, a mechanism for sharing of objects is the desired approach to 

be integrated into the framework.  This approach allows for both data and visualization to remain 

synchronized because each client is using the same objects. 

• Consistency:  The framework must support both internal data consistency as well as display 

consistency.  In other words, the framework must ensure the state of the shared objects and their 

visualization remains the same.  This is essential for effective collaboration to take place. 

• Scalability:  The approach should be scalable with respect to the number of users and the size of 

the shared applications that are to be used.  Increasing requirements should be met by components 

that are flexible and able to handle a greater load (e.g. by adding more servers).  The upper bound 

is not constrained, however, the focus of this framework is to facilitate the sharing of ideas to aid 

in decision-making.  Too many people involved in the collaboration makes the ability to come to 

any consensus difficult. 

• Robustness:  Along with scalability, the framework should be able to handle system failures.  This 

can be best described as self-healing.  When servers go, does the system crash, or is the framework 

able to account for the change and continue the collaboration activities? 

• Communication:  A collaborative environment must be able to support both explicit and 

consequential communications.  Communication is the main focus of a collaboration framework, 

because it enables individuals to work together to accomplish a task.  All actions must be handled 
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and processed by the collaborative framework in a synchronized fashion.  That is, each event of 

action must be processed in an ordered manner according to when the action took place. 

• Dynamic Loading:  Not all users may have every instance or correct version of an application, thus 

creating an inconsistency in the collaborative environment.  To prevent this problem, the 

framework should support the ability to dynamically load classes from a common repository. 

• Coupling:  Coupling is the measure of how much the application is joined to the collaborative 

framework.  The desired approach is to create a framework that is decoupled as much as possible 

from the applications.  This creates a desired separation and independence between the framework 

and the shared applications. 

• Standard Language Support:  The framework should avoid the use of additional support from 

languages (i.e. specialty compilers, interpreters).  The framework should not be bound to a 

particular language or platform, thus enabling independent modification. 

• Visual Collaboration:  One of the goals of the framework is to enable users to collaborate at 

higher level of abstraction from that of sharing data.  To measure this requirement, we ask the 

question:  how well does the framework support sharing of visual entities? 

• Flexibility:  Does the framework provide the capability for programmers to devise their own 

extensions and to customize system behavior?  The framework should enable developers to 

customize components easily with minimal side effects. 

• Coordination of Action:  To avoid conflicts within a shared environment, participants must take 

turns.  In addition, some tasks may require a sequence of events to take place in a certain order.  

Thus, it is imperative that collaborants can organize their actions within the shared workspace so 

conflicts do not arise. 

• Monitoring:  Almost all other mechanisms for collaboration rely on the ability to monitor and 

collect information about others in the workspace.  Workspace or group awareness information, 
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such as who is in the workspace, where they are working, and what they are doing, is the primary 

information needed to enable collaborants to make progress on tasks and effectively work 

together. 

• Protection:  One obvious potential problem with a shared workspace is the inadvertent altering of 

work by another in the workspace.  Thus, people must be courteous of others’ work and not 

inadvertently destroy someone else’s work.  In addition, mechanisms for locking different 

elements or regions of the shared workspace with passwords may be necessary to provide 

adequate protection to a user’s work. 

3.1.2 Visual Collaboration 

Collaboration happens at many different levels.  Section 2.4.2 discusses collaboration at the data, 

data abstraction, view abstraction and view levels.  An important objective of this collaborative framework 

is to support collaboration at a more abstract level than that of the data level.  Visual sharing or view 

abstraction is a desired feature within the framework. 

Figure 10 shows three levels of collaboration that can be used to establish communication between 

two or more clients: data, interactive events and visual.  Data collaboration is the sharing of information via 

a file or raw data.  The ever-increasing popularity and use of XML is making this approach more feasible 

and preferable to application developers.  Interactive event sharing is the propagation of event messages to 

all users.  This is the most commonly used method today.  This may be due to the minimal bandwidth 

required to send event messages to clients participating in a collaborative group.  Visual collaboration is the 

sharing of visual objects within the collaborative environment.  Visual collaboration is the approach taken 

in this research due to its appeal to minimize the complexity of the framework and enhance flexibility. 
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Figure 10.  Visual Collaboration Abstraction Diagram 

3.2 System Architecture/Design 

In this research, the Collaborative Visualization Environment (COVE) framework is designed to 

provide a separation of semantics of applications from semantics of the collaboration and distributed 

computing.  This enables applications to collaborate having no knowledge of the underlying collaborative 

mechanisms.  This approach is similar to the DISCIPLE [33] approach, with a dramatic shift in the 

collaborative mechanisms.  DISCIPLE uses a replicated architecture using an event propagation approach 

while COVE uses a centralized shared object approach.  The primary advantage of using the shared object 

approach is gained by eliminating the need for extensive concurrency and consistency control mechanisms. 

3.2.1 Architecture Choices 

The two most common architectures used in collaborative frameworks are: centralized and 

replicated.  These architectures have subtle difference that can impact the run-time performance, 

functionality, and scalability of resulting collaborative applications. 

In the replicated architecture, [refer to Figure 11] exact copies or replicas of the 
application being shared must be installed and maintained on each host.  The application 
on each host handles the user interaction locally.  Any changes made to the application 
state are broadcast to all other replicas to maintain the consistency of the data and the 
user views.  The major disadvantages of replicated architecture are the difficulties in 
keeping the data and user views consistent and in synchronization.  Since the applications 
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are managed locally, two users may interact with the application at the same time instant 
in different ways, thus resulting in inconsistency. Complex synchronization techniques 
are needed to maintain harmony among the replicas and all user views.  [29] 
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Figure 11.  Replication Architecture [29] 

The strength of the replicated architecture lies in its user responsiveness and robustness.  The user 

interacts with local copies of objects thus increasing the responsiveness and performance of the 

applications.  Robustness is increased because a single point of failure does not exist.   

The centralized architecture as described by [5], “executes a single instance of the collaborative 

application and maintains one copy of the shared data, allowing the single application instance to process 

multi-Input/Output (I/O) and support collaborative functions.”  The main advantage of the centralized 

architecture is the absence of synchronization, as clients communicated via sequential I/O with a single 

copy of the shared data.  This approach also simplifies other replication problems (e.g. concurrency 

duplication tasks).  The primary disadvantage to the centralized architecture is the increase response lag.  

Since all the objects are shared over a network, latency and bandwidth limitations affect the performance of 

the system.  Figure 12 shows how the application is run on a single application with other hosts accessing 

the single application. 
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Figure 12.  Centralized Architecture [29] 

The design chosen for this research is a combination of the two architectures to take advantage of 

the strengths of each.  The centralized architecture reduces synchronization issues while the replication 

architecture provides quicker response time.  Thus, the resulting architecture is a centralized repository of 

shared visual objects with a local replicated application on each host (refer to Figure 13).  Each host gets 

access to a centralized shared object set providing consistency and synchronization controls.  Each local 

host also maintains a local copy of each collaborative application to increase responsiveness and 

performance. 
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Figure 13.  COVE Framework Architecture 
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3.2.2 Session Service Architecture 

To create a framework that decouples the collaborative framework from the application the 

concept of a service is used.  A service is an entity that provides a set of well-defined operations that can be 

accessed anywhere on the network.  A service is comprised of a service provider and a service proxy.  The 

service provider publishes the service proxy to the network so clients can have access to the capability it 

facilitates.  Clients fetch the service proxy from the network and then execute it on their local Java Virtual 

Machine to interface with the service provider. 

The COVE framework uses this concept by establishing a Session Service running on top of the 

Jini™ network.  Jini™ technology [55] is an innovative and usable technology for building reliable, fault-

tolerant distributed applications.  Jini™ provides an infrastructure that allows clients to find services 

independent of both party’s location.  Figure 14 illustrates how the Session Service sit on top of the Jini™ 

network and how client applications interact with the Session Service via the Service Interface or proxy.  

Clients interact with other clients through a generic set of operations supplied in the Session Service.  This 

simple design decouples the collaborative elements of the framework from the client application by 

keeping the collaborative elements strictly in the service.  Clients with access to the service interface need 

never know (nor care) about underlying network classes or interfaces that support collaboration. 

COVE Session Service

Jini™ Network

Service Interface

Client Application

Service Interface

Client Application

JavaSpaces™

 

Figure 14.  COVE Layered Architecture 

The Session Service also has the responsibility to provide the sole interface to the shared object 

store.  Once again, this simplifies the client application by interacting with the session service interface.  
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Additionally, this design choice enables clients to dynamically load the proxy or interface from the network 

to gain access to the service.  This is very powerful in that it allows clients anywhere on the network to use 

a service without any explicit driver or software installation. 

3.2.3 Object Sharing Via JavaSpaces™ 

In this research a shared object space establishes the centralized architecture that is used as the 

collaboration mechanism.  As discussed by Ceglar and Calder [5], “object sharing reduces the need for 

structural redundancy required to support the view of multiple roles of data, and reduces the number of 

instances of objects.”  The object sharing service provides mechanisms for keeping the shared object space 

in a consistent state, thus enabling participants to monitor and plan actions to accomplish tasks.  This 

approach reduces the number of dependencies that must be maintained in order to maintain consistency. 

The shared object approach provides robustness by allowing a global access point to share an 

object anywhere across a network.  Clients can exchange executable content by passing instantiated objects 

from one client to another. 

Redundancy can be accomplished by running multiple synchronized JavaSpace services, such that 

when one JavaSpace goes down the other one takes over.  This capability can avoid a potential single point 

of failure. 

The shared object space utilizes JavaSpaces™ technology as the storage and sharing mechanism 

in the collaborative environment.  JavaSpaces™ provides concurrency and consistency controls for the 

shared objects, thus eliminating the need for additional complex synchronization and concurrency control 

algorithms in the framework. 

3.2.3.1 Concurrency Control 

COVE’s concurrency control model is based on a first come, first served basis.  This type of floor 

control enables collaborants to opportunistically aid each other in accomplishing tasks by coordinating 

actions in a real-time fashion.  When users desire to manipulate an application in the shared environment, 
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they first make a change to their local copy of the shared object.  The framework takes the original object 

from the shared space and replaces it with the local changed object.  The JavaSpace then notifies each 

client that a change has occurred, which then reads the new object from the space and updates its screen.  

The synchronization process only locks the shared object for the duration required to replace it with the 

changed one, thus collaborants cannot lock an object indefinitely. 

To design this concurrency control, objects that are being manipulated are removed from the space 

and become inaccessible to other users.  Users desiring to manipulate an object will wait until the object 

becomes available in the space.  The removal of the object from the shared repository gives exclusive use 

to the participant who gets access to the object first, hence first come first serve.  Upon completion of 

making a change to the object it is then written back to the space and propagated to all clients participating 

in a session to maintain consistency.  The use of the centralized and replicated architecture is evident in the 

concurrency control mechanisms.  The object repository receives and stores the changed object, but each 

workstation receives a copy of that object to display in their local workspaces for the benefit of user 

responsiveness.  The workspace is discussed in greater detail in Section 3.2.4.2. 

3.2.3.2 Consistency Control 

Consistency is another difficulty facing designers of a collaborative framework.  As discussed in 

Section 2.6.3, this issue can be one of the most complex issues to solve.  In this research the shared object 

approach is used to maintain consistency in the collaborative environment.  By maintaining a repository of 

shared objects, consistency can be maintained, because only one set of objects are used for collaboration.  

When objects are changed, the changes are reflected in the shared repository.  Thus, any participant in the 

collaborative environment will have to access this repository to get the current state of the objects. 

3.2.3.3 JavaBeans™ 

The shared object repository must store objects and make them available to clients across a 

network.  To develop a framework that supports every type of application and programming construct 
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without any constraints would be an arduous task if not impossible.  Thus to limit the set of applications, 

the JavaBeans™ [52] component architecture is used.  “A Java Bean is a reusable software component that 

can be manipulated visually in a builder tool” [52].  However, this is a very vague definition.  For this 

research a bean is considered an instantiated group of Java classes that follow the JavaBeans™ 

specification.  The restriction to JavaBeans™ ensures that each application implements the Serializable 

interface, thus enabling the storage and movement of objects across a network.  The Serializable interface 

is used to identify objects that can be converted into a stream of bytes then later be put back together into 

an identical object. 

The JavaBeans™ component architecture is a platform-neutral architecture for the Java 

application environment.  It is the ideal choice for developing network-aware solutions for heterogeneous 

hardware and operating system environments for the following reasons: 

• Common development standard:  JavaBeans™ follow common standard design patterns.  These 

patterns define a standard way beans are coded and enable the mechanism of introspection. 

• Serialization/Persistence:  Serialization and bean persistence are major considerations for the 

sharing of objects.  These mechanisms enable objects to be stored for indefinite periods of time 

and to be sent to other clients across a network.  This capability is critical to the approach taken 

in this research. 

• Introspection:  JavaBeans™ conform to a well-defined design pattern, which is used to obtain 

information about the bean.  The Java Reflection API is used to look inside the bean and extract 

information about its composition.  This feature is used to ensure an application meets the 

constraints that will work in the COVE framework. 

• Event Model:  The JavaBeans™ architecture uses a delegation-based event model.  An event is 

something of importance that happens at a specific point in time (e.g. user clicks a mouse 

button).  The event model is used to identify changes to application beans within the 
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collaborative environment.  This mechanism is critical in signaling the framework to send 

distributed events that are used to maintain consistency. 

3.2.3.4 Session Manager  

The most important shared object that is stored in the object repository is the SessionManager.  

Session management is a key element of the framework that keeps track of what sessions and users are in 

the collaborative environment.  The SessionManager maintains the current state of the environment and is 

responsible to ensure that the state of all users is kept consistent, regardless of when a user enters a session. 

3.2.4 Replicated Client Architecture 

At the end of Section 3.2.1, the design solution introduces a combined approach of using a 

centralized and replication architecture.  The centralized architecture of the framework provides the 

backbone to facilitate collaboration through the uses of a service and a shared repository of objects.  How 

the user interacts with the backbone is just as important. 

The user interface uses a replicated architecture to display the applications in the collaborative 

framework.  This approach is useful in providing greater responsiveness to users.  Each client uses a local 

desktop to display the current state of the session manager.  Workspaces show the current state of the 

session by displaying applications that are being used.  The state of these sessions and applications are 

maintained by the object store; however, each client has a local copy of the application that is updated 

when changes are made to the shared object.  Each client maintains a copy of the global state and notifies 

the object store of changes that are made to its local copies.  This notification is important, because it forms 

the basis for the collaborative mechanism used in the framework. 

The desktop and workspace must support the concept of group awareness in order to enable 

participants to monitor and provide assistance to each other.  Ceglar and Calder [5] stated, “Global 

awareness facilitates multi-user coordination within a collaborative application by providing users with 

information regarding other collaborators, allowing individual users to maintain a global perspective of the 
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collaboration.”  The implementation of awareness enables coordination of actions between users, reducing 

conflicts and duplication of work. 

According to Koch et al [30] there are several common mechanisms used to provide awareness 

information.  Status and events are the most important mechanisms for awareness information.  Status is 

the information collected about the collaborative participants within the collaborative environment.  The 

events provide the real-time workspace awareness.  The session manager provides status to all users in the 

collaborative environment, while the framework processes the events to produce collaborative real-time 

workspace awareness. 

3.2.4.1 Desktop 

The Desktop is the user interface used to represent the current state of the session manager, as well 

as provide a set of operations on which to interface with the collaborative environment.  It enables users to 

discover what sessions (workgroups) exist, find out who is currently in a session and to join one of them.  

As shown in Figure 15 a simple tree-like design can be used to show hierarchy and containment within the 

collaborative environment.  The design of the Desktop provides a global picture of all the users and 

available sessions within the environment.  Thus, users are enabled to form workgroups spontaneously, in 

sessions, to collaborate and accomplish joint tasks. 

As a user joins a session, all the objects that are in that session are shared and become available to 

that user.  Thus, users are allowed to manipulate a group of shared objects to accomplish some desired task 

or operation.  Figure 15 provides a snapshot view of the desktop tool. 

The functions or operations that can be performed from the Desktop are: login to system, logout of 

system, create a session, remove a session, join a session, leave a session, and drop a bean.  This provides 

users the basic functionality needed to create spontaneous collaborative sessions in which work can be 

accomplished. 
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Figure 15.  COVE Desktop User Interface 

3.2.4.2 Workspace 

The Workspace is a local container, which holds all the applications (JavaBeans™) that are part of 

a session.  When a user joins a session, a workspace for that session is automatically launched and the 

current state of the session is displayed.  Users can then add and remove beans from the workspace by 

loading them or closing them.  The workspace provides a semi-WYSIWIS (What You See Is What I See) 

look and feel because all the application will act the same, but the locations of the applications are 

independent of each other.  Figure 16 illustrates how two separate workspaces have the same applications, 

but the locations are maintained independent of each other. 

The Workspace encapsulates each application (bean) in a JInternalFrame.  By so doing, it 

decouples the beans location attributes from those of the global ones.  This enables the bean’s screen 

location to remain a local parameter instead of a shared attribute.  Additionally, the encapsulation provides 
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a generic way to capture events to know when an object changes state.  This is the trigger that synchronizes 

the clients with the shared repository. 

 

Figure 16.  COVE Workspace User Interface 

3.2.4.2.1 Bean Loading 

One of the goals of the framework is to decouple the collaborative framework from the 

applications and allow code to be accessed remotely.  With this in mind, there needs to be a way to link the 

application to the framework and enable the framework to access code remotely.  To accomplish this, the 

concept of dropping a bean into a workspace is used. 

Bean loading provides the primary mechanism to connect the framework and application together 

by having a bean loaded into a workspace.  Each bean is encapsulated by a BeanData object, which is an 

extension of a JInternalFrame, to interface with the collaborative framework.  The BeanData object 

performs two main functions.  First, it stores the beans and second it is used to capture events to 

synchronize them in the collaborative framework. 

Bean loading takes advantage of the ability of the Jini™ network service to load JavaBeans™ 

remotely.  The bean loader uses introspection to gather information about the beans and then displays the 

available beans in the Bean Browser, refer to Figure 17.  When a bean is selected and then dropped into the 

57 



 

workspace, the framework uses the network services to locate the class file for the bean to instantiate an 

object.  This capability provides great robustness to the design and allows for clients to access software not 

previously installed. 

Drop Bean

Jar File

Beans within 
a Jar File

Jar Loader

Help

 

Figure 17.  Bean Browser 

3.2.4.2.2 Bean Synchronization 

When a bean is dropped into a workspace, a glass pane is placed over the bean to be able to detect 

events as they occur.  These events are used to trigger the object synchronization mechanism within the 

framework.  Synchronization is maintained as objects are taken from the shared repository, manipulated, 

and written back to the shared space.  When objects are written back to the repository, each client in the 

session reads the new object and updates its view.  This four-step process of taking, manipulating, writing, 

then reading provides the mechanism for collaboration of beans in the workspace. 
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IV. Implementation 

This chapter presents the implementation details used to create the collaborative visualization 

framework to meet the criteria and design defined in Chapter 3.  Issues surrounding the implementation are 

discussed where applicable. 

4.1 Session Service Implementation 

The service design takes a client-server approach by providing a central place where collaborative 

operations can be processed.  This central approach provides a common interface that each client uses to 

interact within the collaborative framework.  The system is implemented using Jini™ services to provide 

the necessary remote connectivity needed to support collaboration between remote users.  This technology 

provides the desired flexibility and ease of use desired in a framework.  It also satisfies several other 

characteristics, defined in Section 3.1.1, such as: shared state, dynamic loading, scalability, robustness, and 

standard language support. 

The design centers on the concept of a service provider and a service proxy providing a set of 

functionality to users across a network.  The power of this concept is that it enables an application to 

download an interface or proxy from anywhere on the network to use the particular service.  For example, 

Figure 14 illustrates how the application uses an interface to interact with the session service. 

To make this concept a reality, an interface named ISessionService is created that defines what the 

session service offers.  The ISessionService provides a set of methods used to enable collaboration to take 

place.  The actual implementation for the service is found in the SessionServiceProxy class.  The methods 

the service offers are shown in Figure 18. 

As discussed in Section 3.2.2, the design must consolidate all the interaction with the shared 

object repository into a single service.  The SessionServiceProxy creates the interface to the JavaSpace, by 

consolidating most JavaSpaces™ operations to one class.  This simplifies other components in the 
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framework, because they need not know anything about JavaSpaces™.  These components simply use the 

ISessionService interface to interact with the JavaSpace. 

ISessionService and SessionServiceProxy classes define the session service, while the 

SessionServiceWrapper class implements the service provider.  The service provider binds the service 

proxy, in this case the SessionServiceProxy, to the Jini™ lookup server so it can be available to clients.  

Additionally, it maintains the instance of the SessionServiceProxy object that processes the requests.  The 

service provider remains running indefinitely as a means to keep the service proxy available to users.  This 

is necessary due to the use of the Jini™ leasing feature. 

Leases make services available for a certain period.  When that time expires, the service provider 

must renew the lease or the service is dropped from the lookup server.  This mechanism adds robustness to 

the network by enabling self-healing to take place.  When a service crashes, the client using that service 

will eventually time-out and begins looking for another service to communicate with. 

 

Figure 18.  Session Service UML Diagram 
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4.2 Collaborative Framework Components 

4.2.1 SessionManager Class 

The SessionManager is used to maintain global state in the collaborative environment.  Thus, to 

ensure that only one SessionManager object is instantiated within the environment and provide a global 

access point to the object, the singleton pattern is used. 

The singleton pattern [20] is a creational design pattern used to ensure that a class has only one 

instance and can be accessed through a well-known access point.  This pattern is very useful in cases where 

one and only one instance is desired, and global access is needed.  The example of a print manager 

illustrates the need for this pattern.  There may be many printers on a system, but there should be one and 

only one print manager and it must be globally accessible.  This is due to the fact that the print manager 

keeps track of all printers on the network and provides information to clients concerning those printers.  If 

there were multiple print managers, information may be lost or incomplete due to two entities trying to 

maintain control of the printers.  To make this possible the class is made responsible for keeping track of its 

sole instance.  The class can then ensure that no other instance can be created (by intercepting requests to 

create new objects).  Additionally, it provides a global access point to the instance through a static method 

called getInstance(). 

Figure 19 shows a UML diagram of the SessionManager class.  It has an attribute called 

m_instance that is used to keep track of the sole instance of the class.  The visibility of the constructor is 

private, so no outside object can instantiate the SessionManager class.  The well-known access point, 

getInstance() method, creates the sole instance of the SessionManager and returns a pointer to that instance.  

The getInstance() method is static, so it can be accessed without creating an instance of the 

SessionManager. 

The implementation of this pattern is not only convenient, but also essential in ensuring that only 

one SessionManager object exists.  Since the collaborative framework depends on the SessionManager to 

maintain the state of the collaborative environment, one can image what would happen if multiple 
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SessionManager objects were in the environment.  Collaboration would be impossible, because every client 

could have a different view of the environment. 

 

Figure 19.  SessionManager Class Diagram 

For the SessionManager to maintain state of the collaborative environment, two attributes are 

used: m_sessions and m_users.  The m_sessions attribute maintains a list of all the sessions and the m_users 

attribute maintains a list of all the users logged into the collaborative environment.  Both of these attributes 

use the Java Map interface to decouple the actual data structure from the code.  This concept is known as 

programming to an interface, thus allowing the underlying data structure to change without affecting any 

other code that uses that interface.  The Java HashMap is the data structure used for both attributes due to 

its simplicity and quick access time. 

An important implementation decision is made on how to store this information.  At first, the 

m_session attribute stored session objects and the m_users attribute stored user objects.  This made logical 

sense from a single client perspective, but caused inefficiencies in the object sharing approach.  Updates 

required the serialization and deserialization of many unnecessary objects from the JavaSpace.  So to solve 

the problem an object relation approach was used.  The m_sessions and m_users collections now only store 

identification tags or keys and not the actual session or user object.  This still provides the objects with the 
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needed information but removes the aggregation constraint that caused the unnecessary serializations.  This 

approach now enables the framework to directly search the JavaSpace for the desired objects and serialize 

only the objects needing to be updated. 

4.2.2 Desktop Class 

The desktop is broken in two main functional pieces.  First, the desktop provides global 

awareness, by displaying information about users, and sessions currently in the collaborative environment.  

The information is stored in the SessionManager class used throughout the framework to maintain global 

state and provide the model needed for awareness.  The SessionManager is the underlying data model used 

in the Desktop monitor display, shown in Figure 20.  This view provides global awareness to collaborants 

and enables the spontaneous creation of groups to accomplish tasks. 

 

Figure 20.  Desktop Monitor Display 

Second, the desktop provides a set of operations with which to interface with the collaborative 

environment.  The Desktop class uses the already defined and implemented Session Service to perform all 

these operations (e.g., Login, Logout, Create a session, Join a session).  To use the Session Service the 

Desktop is responsible for finding the service and downloading the proxy code so it can use it.  To do this, 

the Desktop first uses Jini’s discovery mechanism to locate a lookup server; then it uses the lookup() 

method from the Jini™ ServiceRegistrar class to find the desired service.  This method, 

lookup(ServiceTemplate tmpl), takes a service template object as input and returns the service object that 

matches the template or null if there is none.  If there is none, the Session Service has most likely not been 

started or has crashed.  Once the desired service is found, the Desktop interfaces with the service via its 
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proxy.  Since the proxy is just another instantiation of an object, the Desktop keeps a reference to it, in this 

case the SessionServiceProxy.  This reference is passed to any other class that needs access to the service. 

Figure 21 illustrates this concept of how the Desktop uses the Session Service to perform the 

collaborative operations.  The Graphical User Interface (GUI), in this case the Desktop, gains access to the 

SessionServiceProxy via the process described above.  Then the GUI makes requests through method calls 

to the SessionServiceProxy.  The proxy forwards those request to the service, which then processes them.  

The Session Service interfaces with the JavaSpace to manipulate and change objects based on the nature of 

the request.  For example, if a user logs into the collaboration session, the Session Service will update the 

SessionManager with a new user ID and create a new User object and store it in the JavaSpace.  If the 

method call has a return value, the service returns a value on completion of the method. 
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Figure 21.  COVE - GUI to Service Relationship Diagram 
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The Session Service performs all these operations, but menus and buttons on the desktop graphical 

user interface are still needed to tie the desired functionality to the graphical user interface.  The desired 

functionality (e.g., Login, Logout, Create session, Remove session, Join session, Leave session) enables 

collaborants to interface with the framework.  To avoid placing large amounts of code in the Desktop class, 

yet provide the menus and buttons with the information needed to handle requests, the command pattern is 

used. 

The command pattern [20] is an object behavioral pattern that enables applications to achieve 

complete decoupling between the invoker and the receiver.  An invoker is an object that requests an 

operation, and a receiver is an object that receives the request to execute a certain operation.  The key to 

this pattern is a Command interface, which declares an interface for executing operations.  This interface 

includes an abstract execute() method that must be defined by concrete classes.  These concrete Command 

classes specify a receiver-action pair by storing the receiver as an instance variable and provide different 

implementations of the execute() method to invoke the request. 

Figure 22 provides an example of how the command pattern is used in the framework.  Consider 

the case where a user is logging into the system.  The Desktop class is the invoker because it calls the 

execute() method of the command interface through the actionPerformed() method of the inner class, 

SessionHandle.  SessionHandle is a simple helper class that handles all events generated in the Desktop 

graphical user interface.  The concrete command, LoginCmd, implements the execute() method of the 

command interface.  The LoginCmd has the knowledge to call the appropriate receiver object’s operation to 

perform the desired task or operations.  In this case, the execute() method makes a call to the login() 

method of the ISessionService object.  Here the concrete command acts as an adapter between the invoker 

(Desktop) and the receiver (ISessionService) objects. 

By using this pattern, the menus and buttons need not know how to handle a request or operation, 

but instead, invoke the abstract command to execute the desired operation.  The SessionHandle inner class 

actually instantiates the correct concrete command that is to be run, then calls the execute() method of the 

new command object.  This simple design pattern enables the Desktop class to offload the specific 
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implementations of the commands it uses to concrete command classes.  The concrete command classes 

have the necessary information needed to carry out the desired operation. 

 

Figure 22.  Desktop Command Pattern Usage 

All concrete commands inherit from an abstract class called Command.  This permits the buttons 

and menus of the Desktop to invoke all requests by using the Command interface; not knowing exactly 

which command will be executed at design time.  Figure 23 shows the concrete commands used in the 

COVE framework.  Each one of the concrete commands uses the ISessionService interface as the receiver 

of the desired action or request. 

The use of this pattern decouples the buttons and menus of the Desktop from the ISessionService 

and allows for a more robust implementation.  New commands are easy to add, because existing classes do 

not need to be modified.  This concept encapsulates all the functionality required for a certain command 

and provides a central control mechanism to execute the requested action. 
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Figure 23.  Command Pattern Class Diagram 

4.2.3 Session Class 

A session is a virtual meeting place where collaborants meet to work together.  The Session class 

provides the needed data model to facilitate collaboration with members of a session.  Its main purpose is 

the keep track of the users involved in a collaborative session and to interface with the WorkspaceContents 

to keep track of the beans within a session.  The Session has the responsibility of giving the bean a unique 

identification number.  This unique identification is needed to distinguish between two different 

instantiations of the same bean. 

4.2.4 Workspace 

The Workspace is a local container, which holds all the applications (beans) that are part of a 

session.  When a user joins a session, a workspace for that session is automatically launched and the current 

state of the session is displayed.  When a user closes the Workspace windows the user is then logged out of 

that session. 
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4.2.5 WorkspaceContents Class 

The WorkspaceContents class is a very simple class that holds a session name and a list of bean 

identification numbers.  When a new bean is dropped into the workspace the Session gives the new bean a 

BeanID and then adds the BeanID to the WorkspaceContents list.  This BeanID is used to uniquely identify 

a bean in the shared space. 

4.2.6 UserAccount Class 

The UserAccount class defines a collaborant within the system.  Information such as name, and 

logon time are all stored in the UserAccount objects.  This information is needed to maintain control over 

the collaborative environment and provide awareness information.  Users logon when they desire to 

participate and logoff the system when they are finished.  The UserAccount class also plays an important 

role in keeping track of the state of the collaborant in the environment, by maintaining a list of sessions in 

which they are participating.  When the user logs out of the system, the user is automatically dropped from 

every session he was participating in.  In this way, consistency is maintained in the system. 

4.3 Event Processing 

Any collaborative system relies on the framework or application to pass information back and 

forth to enable communication between users.  This is done primarily through events.  The remote event 

model, discussed in Section 4.3.2, is used because it handles the distributed concerns of synchronization, 

consistency, unreliability, and unordered processing.  JavaSpaces™ implements the remote event model 

and makes it a good choice for implementation.  Prior to discussing the event model and the listeners that 

support that model, it is important to discuss how synchronization is achieved in the framework. 

4.3.1 Synchronization Mechanism 

To make the collaboration work between clients, the clients must be synchronized.  The design 

indicates a four-step process of taking or locking the object, manipulating it, writing it to the global space, 

and then reading the new object on each client.  JavaSpaces™ technology provides a built-in mechanism to 
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perform each of these functions.  The following operations map exactly to this synchronization model: take, 

write, and read. 

The take operation removes the object from the space, thus, locking it for exclusive use to the 

client who took it.  Once exclusive access to the object is gained, the object can be manipulated.  Upon 

completion of some action by the user, the object is then written back to the space as a new object by the 

write operation.  When an object is written to the JavaSpace, registered listeners recognize a change and 

notify all the clients of the update.  This function is performed by the notify operation.  Upon notification 

all the participants in a session read the object using the read operation. 

4.3.2 Distributed/Remote Event Model 

To understand how the notify method operates it is important to have a firm understanding of 

events and event models.  “Events are the mechanism used for asynchronous communication in Jini™ 

systems, and as such are crucial to the effective use of the technology” [45].  The distributed event model 

provides the necessary protocol to allow for clients to communicate with one another, thus enabling a 

collaborative framework to be built. 

To help understand the distributed event model, it is important to first understand how the 

delegation-based event model works and why it is insufficient for distributed systems.  In the delegation-

based event model there is no central dispatcher of events; every component that generates events 

dispatches its own events to registered listeners as they occur.  The Event Listener first registers with the 

Event Source as a listener for a particular event.  Once the event occurs the Event Source fires an Event 

object to the Event Listener (see Figure 24).  The Event Listener then processes the Event object to produce 

the desired effect from the event. 
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Event
Listener

Event
Source

1. Event Listener registers as a 
listener

2. Event Source fires event by 
sending an event object

3. Event Listener 
processes the event  

Figure 24.  Delegation-base Event Model [56] 

Simon Roberts and Jon Byous [45] presented a number of reasons why the existing delegation-

based event model is insufficient.  These reasons are summarized here: 

• First the pre-existing listener interfaces (ActionListener and others) do not throw a 

RemoteException from their handler methods.  Since Jini™ technology is tied together using 

Java Remote Invocation (RMI) this exception must be thrown.  But, Java™ prohibits 

overriding or implementing a method such that the new method throws exception not declared 

in the original method. 

• Second, the Event classes, such as ActionEvent and others, contain references to the source 

objects that may be used in processing the event.  This reference causes a problem, due to the 

fact that in some cases the event source object is non-serializable.  This prevents the use of the 

source object as an argument to a remote method call. 

• Third, the delegation model assumes that delivery of events is synchronous, reliable, ordered, 

and quick.  This assumption works in a single Java virtual machine, but is not guaranteed in a 

distributed environment.  Messages may be lost, duplicated, reordered or corrupt, thus a new 

event methodology must be used to overcome these problems. 

• Lastly, the registration of a listener wishing to receive an event is handled only by explicit 

calls, such as addWindowEventListener and removeWindowEventListener.  In a distributed 

environment the temporary failure of the listener will cause deregistration of the event, 
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without the explicit call to the removeWindowEventListener.  Thus, this approach is 

insufficient for a distributed environment. 

Jini™ addresses these difficulties in the distributed event model.  First, Jini™ introduces a single 

“universal” event listener: the RemoteEventListener interface.  This is a remote interface, indicating that 

Remote Method Invocation (RMI) is used to call the notify(RemoteEvent) method  that the interface 

defines.  This method then notifies the listener about an event. 

The second and third problems described above are handled by the elegant design of the 

RemoteEvent object.  The Jini™ RemoteEvent object is defined with only four fields (source, eventID, 

seqNum and handback).  The first field is a handle on the source of the event and is generally a remote 

reference.  The eventID is an identifier for the event that gives the handler method a convenient mechanism 

for determining the reason the event has been delivered.  The seqNum is a sequence number that is used to 

give some indication if an event is delivered in the correct order.  The distributed model then uses this 

information to ensure that the listeners get all the messages or events in the correct order.  The fourth and 

final field, the handback, or registration, object is an optional parameter. 

The final problem that was posed with the delegation model is how to abandon event registration 

when a listener fails.  This is handled by leasing.  Leasing is a core part of the Jini™ programming model.  

It provides the mechanism for controlling garbage collection at the API-level.  In other words, establishing 

a lease for an event registration provides a means for a timeout to that registration.  If the leaseholder 

(usually the event listener) keeps renewing the lease at suitable intervals, then the event source will 

maintain the registration; however, if the lease is allowed to expire or is cancelled explicitly by the 

leaseholder, then the event source will recognize that a problem has occurred and will de-register the event 

listener automatically.  Thus, this solution overcomes the inability of the delegations to detect failures and 

abandon event registrations. 

The distributed event model uses four steps to register event listeners with event sources.  Figure 

25 depicts the registration steps and remote event processing.  The first step is for the registrant to register 
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the remote event listener with the event source.  The event source or generator then returns an 

EventRegistration object to the registrant that is then sent to the remote event listener.  This makes the 

connections necessary for the event generator or source to send a RemoteEvent to the remote event listener.  

This model is the basis for processing changes made in the collaborative distributed environment. 
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Source
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Event

Listener

1. Registrant registers the remote event 
listener with the event generator

2. Event generator returns an event 
registration for the remote event listener 
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registration to the remote event listener

4. Event generator 
fires a remote event 
to the listener to 
indicate the kind of 
event occurred
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Figure 25.  Jini™ Remote Event Model [56] 

The distribute event model is the basis of the notify operation.  That is, that a registrant registers an 

event listener with an event generator.  In this case, the event source is the JavaSpace.  The event registrant 

is the class that registers the remote listener.  The remote event listener receives notification when a change 

is made to an object.  The registrant calls the notify method on the JavaSpace with two main parameters: 

the Entry and the listener.  The Entry object is the template that is used to match objects against future 

writes to the space and the listener is the object that receives the remote event sent by the event source.  

The JavaSpace then notifies the remote event listener when an object that matches the template is written to 

the space. 

To facilitate collaboration there are three main listeners that are used to handle events within the 

framework: SessionManagerListener, WorkspaceContentsListener, and BeanListener.  Each of these 

listeners is discussed in greater detail below. 

72 



 

4.3.3 SessionManager Listener 

The SessionManagerListener is registered to the shared space by the Desktop to listen to changes 

to the SessionManager object.  Its sole purpose is to process changes that are made to the SessionManager.  

The listener must implement the Jini RemoteEventListener interface and extend the RMI 

UnicastRemoteObject.  The RemoteEventListener interface is used to indicate to the framework that the 

notify() method is implemented.  As part of the remote event model, the remote listener notify() method is 

called when an object is written to the shared space that matches the template.  Thus, the notify() method 

must be implemented in the listener class or an error will occur.  Figure 26 shows that the notify() method is 

the only implemented method of the SessionManagerListener.  In this instance, the notify() method simply 

reads the new SessionManager class from the JavaSpace and notifies the Desktop to update its monitor 

display.  The Monitor, MonitorTree, and MonitorTreeModel classes take the information stored in the 

SessionManager and display it as a JTree, as shown in Figure 20. 

 

Figure 26.  SessionManagerListener UML Diagram 

The listener must also implement the RMI UnicastRemoteObject because the event processing is 

done via Java’s Remote Method Invocation (RMI).  Thus, this interface must be implemented to allow for 

the notify() method to be called remotely.  The UnicastRemoteObject class adds the needed functionality to 

enable the listener to communicate across a network to other clients.  This implementation decision 

requires that all listeners be compiled using Java’s RMI compiler (rmic).  The output of this compiler is a 
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stub and a skeleton bytecode file that must be placed in the root directory of the running Hypertext Transfer 

Protocol (HTTP) server.  The reason for the specific location of the stub and skeleton files is due to the fact 

that the lookup server looks for these files in that location.  If it cannot find them, then the framework will 

cease to work because the notify methods will never be run, thus never allowing the collaboration 

mechanism to operate.  For further information concerning RMI see Appendix B. 

4.3.4 Workspace Contents Listener 

The WorkspaceContentsListener is registered to the shared space by the Workspace class and 

listens for changes made to the WorkspaceContents objects.  For each WorkspaceContents there is a unique 

listener associated to it.  Thus, the appropriate listener is sent a remote event when changes to the 

WorkspaceContents object are written to the JavaSpace.  The notify method must be implemented as 

discussed above (Figure 27 shows the notify method as the only method the listener implements). 

This notify() method simply calls the Workspace to rebuild itself and redisplay its contents.  The 

Workspace uses the WorkspaceContents list to keep its collection of beans up-to-date.  Each bean is 

contained in a BeanData object, which is just a JInternalFrame object.  The rebuild process iterates 

through the WorkspaceContents list and ensures that the Workspace has all beans in its workspace.  If it 

does not, the Workspace loads the bean and adds it to the workspace.  If a bean is not in the list and the 

Workspace has it instantiated, then the Workspace removes the bean from the workspace.  Once everything 

is up-to-date in the workspace, the redisplay method is called.  This method simply repaints all the 

components in the workspace. 

It is important to note that the Workspace is never written to the shared space, but remains local on 

each client.  The BeanData object, however, is decomposed and written to the space.  The actual bean that 

is instantiated is shared through the JavaSpace.  The bean is written to the space and then read by clients 

participating in that session and added to their local workspace.  The BeanListener class is discussed in 

Section 4.3.6. 
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Figure 27.  Workspace Components UML Diagram 

4.3.5 Glass Pane 

To be able to capture events, a glass pane is used to intercept all user events (mouse and keyboard 

events).  Once events are captured, the synchronization mechanism in the framework is notified.  The 

Java™ tutorial provides this insight: “The glass pane is useful when you want to be able to catch events or 

paint over an area that already contains one or more components.  For example, you can deactivate mouse 

events for a multi-component region by having the glass pane intercept the events” [50].  Figure 28 shows 

how the glass pane is set at the topmost Z-order to cover the bean’s graphical user interface and intercept 

all user events, without occluding the underlying Java™ components. 

As each bean is dropped into the Workspace, a glass pane is added to the JInternalFrame that 

encapsulates it.  This keeps each bean separate, enabling events to be intercepted only when a user is 

interfacing with the bean. 
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Figure 28.  Glass Pane Diagram [50] 

4.3.6 Bean Listener 

Figure 27 shows a relationship between the BeanListener and the BeanData classes.  When a bean 

is added to the collaborative environment the bean is encapsulated in a BeanData object and stored out in 

the space via the BeanEntry object.  The BeanData class registers the listener with the shared space to 

listen for changes to the bean.  The user’s actions with the beans are captured by the glass pane and then 

passed to the underlying bean component that should receive the events.  The bean processes the events and 

then the resulting bean is written to the space.  Just as before, the notify() method of the BeanListener is 

then called to process the changed object. 

The notify() method of the BeanListener reads the new bean from the space and updates the 

workspace with the new bean.  After the update takes place, the redisplay method is called to reflect the 

change in the workspace. 

4.4 Remote Code Access 

The capability to expand the framework is an important element of this design.  To enable 

expansion, the framework was designed to decouple the applications from the collaboration elements.  

Thus, to add capability is as simple as adding a bean to the library. 

Adding beans is as simple as placing files in the correct location on the server.  The dynamic 

loading mechanism uses a simple hypertext transfer protocol (http) server that stores the class files needed 

in the serialization process.  When an object is passed in or out of a remote method call or is passed to the 
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JavaSpace, the object is serialized.  Only member data within that object is written to the byte stream, not 

the actual code that implements the object.  Thus, the class file must be located upon deserialization of the 

object. 

“When the sender of an object serializes that object for transmission to another Java Virtual 

Machine (JVM), it annotates the serialized stream of bytes with information called the codebase” [15].  The 

codebase is the mechanism for remote class loading to find the new classes.  It contains information telling 

the receiver where the implementation of the object can be found, thus enabling the remote virtual machine 

to deserialize that object.  Further information about codebase can be found in Keith Edwards’ book “Core 

Jini, Second edition” [15].   

The framework uses this codebase concept to expand the local classpath.  The codebase is set, via 

a property to the server’s Java Virtual Machine, that contains the http Universal Resource Locator (URL) 

that indicates the location of the codebase, for example: -Djava.rmi.server.codebase= 

"http://129.92.20.80:4220/”.  The capability enables the framework to dynamically load bean code from a 

central location, thus making the solution more robust. 

4.5 Transactions – Solutions to Consistency and Partial Failures 

The most challenging aspect of a distributed system is the difficulty of detecting and dealing with 

partial failures.  These partial failures create inconsistencies in the distributed system.  To help prevent 

these inconsistencies, the notion of a transaction is used. 

Transactions keep the objects in the shared space in a consistent state.  Either they get changed or 

they do not.  Nothing in between can happen.  So if something crashes when trying to change an object the 

state of the shared space will remain intact because every operation performed by the SessionServiceProxy 

is done through transactions. 

Transactions are implemented in every method of the SessionServiceProxy.  Each method in the 

JavaSpaces™ interface has a transaction parameter that can be used.  The session service uses this 
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parameter to group several operations together to maintain consistency in the global space.  A simple 

example will illustrate how this works. 

Consider a user trying to log on to the system.  The login command is issued from the Desktop 

class to the SessionServiceProxy via the concrete command LoginCmd.  The SessionServiceProxy is 

responsible to ensure the JavaSpace remains in a “safe” state, so it uses a transaction.  The code in Figure 

29 creates a Transaction variable called txn.  It uses the helper classes of the TransactionFactory to create a 

transaction.  The variable m_mgr is a handle to the transaction manager and is passed into the create 

method of the TransactionFactory so it can manage the transaction 

1. try
2. {
3. trc = TransactionFactory.create(m_mgr, 300000);
4. }
5. catch (Exception e)
6. {
7. System.err.println("Could not create transaction " + e);
8. }
9. Transaction txn = trc.transaction;

1. try
2. {
3. trc = TransactionFactory.create(m_mgr, 300000);
4. }
5. catch (Exception e)
6. {
7. System.err.println("Could not create transaction " + e);
8. }
9. Transaction txn = trc.transaction;

 
Figure 29.  Transaction Creation Code Example 

The transaction now may be used to group like commands together.  In the case of a user logging 

into a system, we want to make sure the user gets added to the system properly (the code for this is shown 

in Figure 30).  First the SessionManager must be taken from the space under a transaction (line 5).  After it 

is removed from the shared space, it can be manipulated.  In this case, line 9 adds a user, and line 10 

updates the session manager on the local machine.  Finally, after all the manipulations are complete, the 

SessionManager is written back to the space under the same transaction to become available to all users, 

(line 12). 

If at any time an error occurs, the catch block (lines 15-18) catches the exception and aborts the 

transaction.  If all goes well, the transaction commits (line 19) and the object is written to the JavaSpace. 
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sessionManager = (SessionManagerEntry) m_space.take(sessionManTemp, txn, long.MAX_VALUE); 

1. try
2. {
3. try
4. {
5.
6. if (sessionManager != null)
7. {
8. // Add the user to the sessionManager 
9. sessionManager.m_sessionManager.addUser(userAccount);
10. SessionManager.setInstance((SessionManager)sessionManager.m_sessionManager);
11. // Write the SessionManager back to the space
12. m_space.write(sessionManager, txn, Lease.FOREVER);
13. }
14. } // End try (1st)
15. catch (Exception e)
16. {
17. txn.abort();
18. }
19. txn.commit();
20. } // End try (2nd)
21. catch (Exception e)
22. {
23. System.err.println("Transaction commit failed");
24. ...
25. }

sessionManager = (SessionManagerEntry) m_space.take(sessionManTemp, txn, long.MAX_VALUE); 

1. try
2. {
3. try
4. {
5.
6. if (sessionManager != null)
7. {
8. // Add the user to the sessionManager 
9. sessionManager.m_sessionManager.addUser(userAccount);
10. SessionManager.setInstance((SessionManager)sessionManager.m_sessionManager);
11. // Write the SessionManager back to the space
12. m_space.write(sessionManager, txn, Lease.FOREVER);
13. }
14. } // End try (1st)
15. catch (Exception e)
16. {
17. txn.abort();
18. }
19. txn.commit();
20. } // End try (2nd)
21. catch (Exception e)
22. {
23. System.err.println("Transaction commit failed");
24. ...
25. }

1. try
2. {
3. try
4. {
5.
6. if (sessionManager != null)
7. {
8. // Add the user to the sessionManager 
9. sessionManager.m_sessionManager.addUser(userAccount);
10. SessionManager.setInstance((SessionManager)sessionManager.m_sessionManager);
11. // Write the SessionManager back to the space
12. m_space.write(sessionManager, txn, Lease.FOREVER);
13. }
14. } // End try (1st)
15. catch (Exception e)
16. {
17. txn.abort();
18. }
19. txn.commit();
20. } // End try (2nd)
21. catch (Exception e)
22. {
23. System.err.println("Transaction commit failed");
24. ...
25. }  

Figure 30.  Login Transaction Code Example 
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V. Results 

A comparison of COVE to other frameworks is performed to evaluate the effectiveness of the 

developed framework.  The criteria described in Section 3.1.1 provide the objective categories on which to 

compare and contrast the different frameworks.  This chapter examines the research results and analyzes 

them with respect to the established criteria. 

5.1 Comparative Analysis 

This section evaluates each of the described frameworks (COVE, DISCIPLE, COAST, Habanero, 

and ColVis) with respect to the established requirements listed in Section 3.1.1.  A subjective analysis is 

performed on each framework to measure how well it meets the criteria.  When a framework meets that 

requirement, it is assessed as a strength or weakness to approximate the degree in which the requirement is 

met.  The purpose of the comparison is to see to what degree the new framework meets the described goals 

and to compare it to other existing frameworks. 

5.1.1 Criteria Satisfaction 

Generality is the ability of a framework to be used across many different domains.  Each 

framework under consideration provides a backbone that can support any domain.  The solution for 

generality is implemented differently for each framework.  The COVE and DISCIPLE frameworks rely on 

JavaBeans™ applications to support any domain.  Habanero takes any Java application and adds code to it 

to make it collaborative.  The COAST framework provides a generic set of components that are used to 

construct domain-specific applications.  The ColVis framework relies on a set of visualization applications 

that interface with components in the collaborative framework to facilitate generality. 

Automation is the spontaneous support of making an application collaborative with minimal 

intervention from the developer.  COVE enables existing beans to be dropped into a framework without 

any modification.  DISCIPLE does a similar thing, but dropping “unaware beans”, beans that do not have 
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any DISCIPLE component extensions, into a workspace causes the framework to crash.  This may be due 

to the version of DISCIPLE that was used in the evaluation.  Habanero has an external automated process 

that converts Java applications to collaborative applications.  All of these frameworks require very little 

effort on the part of the developer to create multi-user applications and are considered to be strengths of the 

frameworks.  COAST supports automation by providing a robust set of components, but still requires 

extensive developer interaction to build a collaborative application from the ground up.  The ColVis 

framework provides a set of interfaces and classes that are used to create multi-user applications.  This 

approach still requires extensive code changes in the toolkits, and effort on the part of the developer to 

create new distributed applications. 

Shared state and consistency fit naturally together, because they both affect the ability of the 

framework to effectively support collaboration.  These criteria are strengths for each of the frameworks due 

to their ability to keep shared resources in the same state.  Shared state and consistency are maintained in 

different ways, but each framework effectively implements the criteria. 

Scalability is the ability of the framework to expand to handle the load of additional users.  This 

criterion is considered to be a strength for the COVE, COAST, and ColVis frameworks due to their ability 

to add additional resources to expand their capability to handle a higher load.  COVE allows for additional 

services and shared repositories to be added, while COAST adds additional mediators to expand their 

capability.  The ColVis framework could be modified to add additional JavaSpaces™ to support a higher 

load.  The other two frameworks provide average support for this criterion.  Habanero arbitrators use 

TCP/IP sockets to connect to each client, which do not scale well due to overhead.  DISCIPLE provides 

only one server that may get overloaded and become a bottleneck when numerous clients are passing 

events. 

Robustness is a measure of how well a system handles system failures.  The COVE framework 

provides the most robust solutions for meeting this criterion through the use of Jini™ services.  It takes 

advantage of the self-healing properties of Jini™ by enabling clients to look for alternate services at 

runtime when a component fails.  It allows for redundant services and multiple central object repositories to 
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be running simultaneously to provide backup when system failures occur.  The COAST and ColVis 

framework provide average support for this criterion.  COAST provides mediators that store persistent 

objects; thus, when these mediators fail, clients may retry to access these objects when the mediator 

becomes available.  ColVis uses a similar persistent storage method through the use of JavaSpaces™.  

When a client crashes, the current state of a session can be reacquired through reading the event history 

from the JavaSpace.  Both of these approaches still require user action to reacquire the current state of the 

collaborative environment.  Habanero uses an arbitrator to examine each action to ensure that it is legal, 

thus protecting the framework from actions that may cause failures.  However, it does not provide 

redundancy or persistent storage for state information, thus creating a limitation in the framework.  A 

weakness in the DISCIPLE framework is the lack of attention given to this criterion. 

Communication is the ability to transfer explicit and implicit information.  Each framework 

supports explicit communication through the passing and manipulation of entities in the collaborative 

environment.  However, none of them fully address the issues associated with implicit information. 

Dynamic loading is the ability to access a common application repository and download the 

current version of code to execute.  The COVE and DISCIPLE frameworks provide a robust solution to this 

criterion.  COVE uses a bean repository and Remote Method Invocation (RMI) technology to access 

remote class files, thus sending needed code to clients.  The DISCIPLE framework uses a resource server to 

accomplish a similar task.  The resource server disseminates needed code to clients involved in a 

collaborative session.  COAST supports dynamic loading at a very limited level.  When applications need 

data, COAST mediators dynamically load data but do not load actual classes.  The Habanero and ColVis 

framework do not support this capability. 

Coupling is the measure of how much the application is joined to the collaborative framework.  

The goals were to make the framework stand apart from the application and to ease the burden of the 

developers in developing applications.  The COVE and DISCIPLE frameworks do this through the use of 

adapters that capture events.  COVE uses a glass pane that is placed over every bean that is dropped into a 

workspace to capture events and make the connection between the framework and the applications.  
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DISCIPLE uses adapters that are generated at runtime for each “unaware bean” that connects the 

framework to the application.  These approaches greatly ease the burden of developers, as they need not 

worry about the collaborative elements of the framework; rather they need only to create beans that have a 

desired functionality and drop them into the framework.  COAST, Habanero, and ColVis provide 

components that are extended or used in the application to provide the collaborative elements.  This 

approach is the most common approach taken in collaborative frameworks.  It enables developers to create 

applications from the ground up using the set of collaborative components to link the application to the 

framework. 

Frameworks should support a standard language and not rely on additional support from languages 

(i.e. specialty compilers, interpreters).  All the frameworks evaluated use standard languages.  COVE, 

DISCIPLE, Habanero, and ColVis all use standard supported functions from Java.  COAST uses Visual 

Works Smalltalk, which is a platform-independent environment, to provide standard language support.  

This is a strength for each framework with the exception of COVE.  COVE uses the remote method 

invocation compiler (rmic) that creates an additional constraint in the framework. 

Visual collaboration is the framework’s ability to support communication at a higher level than 

that of the data level.  This is considered a strength for the COVE and COAST frameworks due to their 

support of visual abstractions.  COVE uses the visual object to collaborate and COAST supports shared 

models that represent the views.  The other frameworks all collaborate via event passing and do not really 

support the criterion. 

Flexibility enables developers to customize components of the framework easily with minimal 

side effects.  COAST, Habanero and ColVis support some type of modular component approach to enable 

customization of the framework.  COAST is built using a set of modifiable components.  The side effects 

caused by modifying a component are difficult to assess, since the software was not obtained for 

evaluation.  Habanero uses an arbitrator that can be customized by the application developer to have the 

desired functionality, but other components in the framework are tightly coupled; thus, changes would 

result in side effects.  The ColVis framework provides a toolkit that can be customized and changed to meet 
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the needs of the users, but changes to the components of the framework would cause substantial side effects 

in the developed tools in the toolkit.  The COVE and DISCIPLE frameworks have a limited capability to 

customize framework components.  These frameworks use JavaBeans™ to provide great application 

flexibility to the developers.  Modifying the behavior of the framework, however, introduces side effects 

due to the interrelationships between the framework packages. 

Coordination of action is the “floor control” mechanism used to ensure that collaborants take 

turns.  Each framework meets this criterion, but COAST and Habanero provide more robust solutions by 

supplying several models that change the behavior of control.  COAST provides a set of session objects 

that implement different collaboration modes, such as loosely- and tightly-coupled sessions.  Habanero 

provides several different arbitrators that use different collaboration modes (e.g., turn-taking and student-

teacher).  This allows the developer the ability to customize the behavior of the coordination of action to 

ensure the needs of the users are met.  The other frameworks take a first-come/first-serve approach by 

sequentially ordering all actions in the framework.  A common server processes requests sequentially as the 

clients initiate them.  These frameworks are effective in providing “floor control” mechanisms, but they 

lack the ability to facilitate other modes. 

Monitoring is the ability of the framework to collect and display information about the 

collaborants’ actions.  A strength of the DISCIPLE and Habanero frameworks is their extensive set of tools 

used to display users’ actions and provide user awareness to collaborants.  They both use a session manager 

view to display global information about the environment, but also include tools such as shared pointers 

and radar views to provide additional insight to what users are doing.  The COVE and COAST frameworks 

primarily provide global session management views to enable users to see what is going on.  This is 

effective but limited because additional context is lost about where other people are working.  The ColVis 

framework provides a session view and a message window, but lacks a global view.  This creates a problem 

when a user wants to find out what sessions are available to join. 

Protection provides safeguards on the work of users so information is not inadvertently or 

purposefully destroyed.  This characteristic may seem contrary to the nature of collaboration, but is 
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important to enable individual work to be accomplished.  The DISCIPLE, COAST and Habanero 

frameworks support this concept to a certain extent.  DISCIPLE has the concept of private workspaces that 

are restricted to their owners.  This allows users to work in their own space for a time and then make the 

session collaborative.  COAST and Habanero provide floor control modes that can restrict the access to 

work within a session.  For example, in a student-teacher mode, the teacher is the only one able to initiate 

actions.  This prohibits students from changing the material being presented.  The COVE and ColVis 

frameworks provide limited support to this concept.  COVE provides some basic security mechanisms to 

prohibit unauthorized clients from getting access to applications in the framework.  ColVis provides 

unshared workspaces, but they cannot become shared.  Additionally, ColVis provides a moderator that can 

mute a participant so they are unable to contribute to the collaboration.  This criterion is not a strength of 

any of the frameworks evaluated. 

5.1.2 Summary of Analysis 

Table 3 summarizes the analysis and identifies the strengths and weaknesses given to the 

frameworks.  The blank spaces in the table indicate that the particular criterion was met to some extent, but 

was not considered to be a strength nor a weakness of the framework.  This table clearly shows that none of 

the existing frameworks have strengths in every criterion used for evaluation.  The reason for this is that 

each framework centers on a certain set of characteristics and other areas are left underdeveloped.  

Protection and flexibility are some of those underdeveloped areas for all frameworks. 

There is no conclusive evidence that COVE or any of the listed frameworks is better than another.  

Each framework maintains a certain focus on a particular set of capabilities.  For example, COVE and 

DISCIPLE focus on dynamic loading as a key element to their design, while COAST and Habanero 

provide better solutions to coordination of action criteria.  Therefore, to determine which framework is 

desired in building a collaborative application, it is imperative to examine the functionality and 

characteristics desired, and then choose appropriately. 
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Robustness S W  W  
Communication    
Dynamic Loading S S W W W
Coupling S S    
Standard Language 
Support  S S S S

Visual Collaboration S  S   
Flexibility W W    
Coordination of Action   S S  
Monitoring  S  S W
Protection W  W W W

 

Table 3.  Frameworks Comparison Analysis Table 

5.2 COVE Framework Benefits 

The COVE framework uses a robust service mechanism to provide the collaborative functionality 

of session management.  Jini™ technology provides this robustness with mechanisms to publish services 

that are scalable, reliable, and simple. 

The framework is implemented in the Java programming language which provides great flexibility 

and platform independence.  Due to the fact that all Java code is compiled into bytecode, then run on a Java 

Virtual Machine, all software written in Java becomes independent of the operating system and hardware 

architecture on which it runs.  This provides programming flexibility to run any program or design a 

framework that will work on any platform.  Thus, the framework’s compiled code can be run on many 

different platforms that have JVM installed. 

The shared object approach reduces the number of objects that are maintained by storing them in a 

central location in the collaborative environment.  Complex synchronization and concurrency controls are 

avoided to help maintain consistency throughout the collaborative environment.  JavaSpaces™ is a 
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technology that makes this all possible.  In essence it hides the concurrency control and synchronization 

from the framework by implementing them in the JavaSpaces™ API. 

The network and collaboration aspects of the framework are decoupled from the application.  Any 

bean can be loaded and used in the framework.  This capability enables developers to focus their attention 

on developing applications and not worry about the collaborative concerns. 

Visualization techniques are supported through the use of shared objects, thus any technique can 

be employed within this framework.  The only constraint to the visualization techniques used is the 

limitation the application imposes.  Thus, techniques such as zooming, and filtering, can be used effectively 

within the framework. 

5.3 Serialization Problem with JavaBeans™ 

During the implementation an assumption was made with regards to the serializable nature of 

JavaBeans™.  Swing components are built upon the JavaBeans™ architecture.  Therefore, they are beans 

and have the characteristics of JavaBeans™.  So the assumption was made that any bean could be serialized 

to the JavaSpaces™, and then reconstituted in the same state. 

The assumption that any bean is by definition serializable was tested and failed.  The reason for 

the failure was a lack of understanding of the serializable mechanisms of JavaBeans™.  The JavaBeans™ 

API documentation states, “as part of JavaBeans™ 1.0 we support the Java object serialization mechanism 

which provides an automatic way of storing out and restoring the internal state of a collection of Java 

objects” [52].  This mechanism is used to facilitate the goal of persistent storage of a bean.  “However a 

bean should not normally store away pointers to external beans (either peers or a parent container) but 

should rather expect these connections to be rebuilt by higher-level software” [52].  This last statement 

creates the problem and requires a work around to have the beans share state in the JavaSpace. 

To solve the problem, a constraint on the construction of bean applications is imposed.  The 

constraint levied on each bean is to implement the readObject and writeObject methods.  The writeObject 
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method is responsible for writing the state of the object for its particular class so that the corresponding 

readObject method can restore it.  The readObject method is most critical, because it restores the 

connections to other external beans (i.e. reestablishing listeners).  The trick to solving the problem is that 

the Java Virtual machine automatically checks to see if either method is declared and makes the appropriate 

call.  This ensures that the integrity of the class is maintained and the serialization protocol can continue.  

This solution is effective but reduces the overall flexibility and generality of the framework. 
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VI. Conclusions and Future Work 

The previous chapters describe the design and implementation of the Collaborative Visualization 

Environment (COVE) framework, and provide a comparative analysis to existing frameworks.  This 

chapter summarizes the results from the previous chapters and suggests some potential areas for future 

work to enhance the COVE framework. 

6.1 Conclusion 

The goals of this research were to create a generic framework that supports shared interaction, 

visual sharing, remote code access, and easy tool integration. 

• Shared interaction – the collaboration between geographically separated users interacting with 

data and visual representations to accomplish tasks. 

• Visual sharing – remote users collaborate at a higher level of abstraction than the data through 

the sharing of visual objects. 

• Remote code access –users access remote data and applications without the need for previous 

installation. 

• Easy tool integration – flexibility to easily integrate any Java tool and make it collaborative. 

• Facilitate software development – the purpose of a framework is to ease the burden of 

developers in developing software 

These goals were met through the use of a centralized object repository (JavaSpaces™), Jini™ services, 

and JavaBeans™ technology.  By meeting these goals, the collaborative visualization environment (COVE) 

framework provides a simple and effective means for rapid development of collaborative visualization 

applications. 
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The COVE framework provides several advantages to developers of collaborative applications.  It 

is a generic framework for synchronous collaboration of users with heterogeneous computing platforms.  

The framework enables shared interaction between geographically separated users through the interaction 

of visual objects.  Object sharing is made possible through the integration of JavaSpaces™ into the 

framework.  It facilitates the storage and retrieval of any type of serializable object with relative ease and 

efficiency.  JavaSpaces™ also maintains consistency and concurrency through the use of this common 

object store.  All collaborants access this shared repository to gain access to the current state of a 

collaborative session. 

Remote code access enables applications to be run on remote machines without the need of 

previous installations.  This capability is achieved through the use of Jini™ technology and Remote 

Method Invocation (RMI).  Jini™ provides a mechanism for services to be available for use from anywhere 

on the network through a lookup server.  This enables clients to access service interface code remotely.  

RMI is another key enabler for remote code access through its extension of the classpath, called the 

codebase.  This extension enables clients to download remote code from a specified location to use locally 

on their machines.  This capability is used in the bean repository by placing all bean class files in the 

codebase location to enable any client access to the code.  These capabilities add great flexibility and 

support to the framework by enabling clients to gain access to needed software through dynamic loading. 

Another advantage of this framework is the simplicity with which beans can be integrated and 

made collaborative.  The framework is designed to completely decouple collaborative elements from the 

applications.  This separation allows developers to concentrate their efforts on building JavaBeans™ 

applications.  To integrate the new application into the framework, the developer need only place the new 

bean in the bean repository and then load it in the collaborative environment. 

Due to problems with beans serialization, the achieved flexibility of the framework was less than 

desirable.  It was assumed that any bean could be serialized; however this turned out to not be true in all 

cases.  To get around this problem, the readObject and writeObject methods had to be used to reconnect 

objects (e.g., listeners, etc.), thus forcing the bean designer to consider serialization during development.  
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Sun Microsystems, Inc. recently released a new version of Swing that changes the persistence mechanism 

for JavaBeans™ from general binary serialization to a schema using XML.  This approach is intended to 

establish a standard for design and address the long-term persistence problems for JavaBeans™, thus 

allowing developers to overcome the serialization limitations. 

An established set of criteria was used to measure how well the goals were met.  The criteria were 

based on fifteen characteristics, derived from previous work, that are desired in a collaborative 

visualization framework.  The COVE framework had nine strengths and two weaknesses and satisfied all 

the goals to some degree.  Of the frameworks compared, COVE provided the most strengths and is the 

most suitable framework to use for the established criteria. 

6.2 Future Work 

There are two main areas where future work can be completed to improve the framework.  The 

first is to enhance the framework to support additional collaborative capabilities (i.e. component 

customization, protection consideration, etc.).  The second is to research new ways to add visualization 

tools in the framework to provide users with greater awareness within the collaborative environment. 

6.2.1 Enhancements 

6.2.1.1 Customizable Components 

The design of the system dictates certain behaviors of the system, such as allowing every member 

of a session equal access.  This situation may be unsuitable if tighter controls are needed.  For example, in 

the teacher-student mode, the teacher must have complete control of all actions; otherwise students may 

hinder the learning by changing the state of the environment prematurely.  Thus, to increase the flexibility 

of the framework, this type of functionality should be consolidated into a single customizable component.  

This also applies for other elements of the framework that may need to be customized by the application 

developer.  This allows developers the ability change the behavior of a component to meet the needs of 

their organizations without affecting the other elements of the framework. 
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6.2.1.2 Protection Mechanisms 

One obvious potential problem with a shared workspace is the inadvertent altering of work by 

another in the workspace.  The framework should support mechanisms for locking different elements or 

regions of the shared workspace for private use.  This would enable users that are solving a problem a 

reserved space where they can manipulate objects prior to sharing them with all members of the session. 

6.2.1.3 Session Recording and Playback 

Another feature that could enhance the session management is the ability to keep a record of all 

user actions and generate a session history.  This capability could be used to produce playbacks of a 

collaborative session to provide information on how a decision or consensus was reached. 

6.2.1.4 Complex Bean Integration 

To evaluate the performance of the framework, the desired approach was to use a complex bean, 

such as mission planning or whiteboard applications.  Due to the time constraints, only simple beans were 

used to demonstrate the functionality of the framework.  With this limitation identified, a valuable future 

effort would be to integrate more complex beans to evaluate the framework’s ability to scale to more 

complex applications.  Along with the evaluation, a bandwidth analysis should be performed to determine 

the amount of data being passed over the network. 

6.2.1.5 Passing of Object Differences 

Based on the design of the framework, every time a bean is changed, it must be serialized over the 

network.  With complex beans, this could get very time and bandwidth intensive.  A future effort could 

examine the feasibility of passing object differences from the shared object space to the clients.  This would 

reduce the potential bottleneck of having large amounts of data being sent over the network.  One possible 

solution is the use of XML.  The new persistence mechanism for JavaBeans™ in Java Swing version 1.4 

uses XML to store the current state of the beans.  This new mechanism could be used to send changes, thus 

updating the beans based on the differences in the XML data.  This solution would greatly reduce the 
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amount of data transferred across the network by limiting network traffic to changes to the bean instead of 

the entire bean. 

6.2.2 Addition Visual Awareness Capabilities 

Awareness facilitates multi-user coordination by providing hints to what and where people are 

working in a shared environment.  Several visualization techniques, such as TelePointers and Radar 

views [28], have been shown to improve users cohesiveness and effectiveness. 

6.2.2.1 TelePointers 

TelePointers provide a mechanism for each user to track the mouse pointer of other users within a 

collaborative session.  Each user can assign a label and a color to their pointer.  Mouse movement from 

each participant can be viewed in a shared application window and viewed by all participants in a session. 

6.2.2.2 Radar Views 

The concept of overview and detail [4] is very useful in providing global awareness to participants 

in a collaborative session.  Radar views, described by Gutwin, et al [21,24], use overview and detail to 

display information about collaborants interaction on a single screen (Figure 31).  The overview shows the 

entire workspace in miniature, and the objects as they move and change within that workspace.  Each 

collaborants’ telepointer and the extents of their main views are added to provide additional detail.  Radar 

views make collaborants’ location, presence, and actions visible, regardless of where they are located in the 

workspace. 
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Figure 31.  Radar view example [21] 

6.3 Final Concluding Thoughts 

This collaborative visualization framework provides a small piece for a Joint Battlespace 

InfoSphere (JBI) solution to enable the sharing of information.  This capability can aid the warfighter in 

making decisions and fulfill the mission of Joint Vision 2020, which is to fight and win wars. 

The COVE framework is a simple and effective means for rapidly developing collaborative 

visualization applications.  The use of Jini™ and JavaSpaces™ provides system robustness and effectively 

enables the sharing of Java objects.  The framework has met all established goals and should be considered 

a success. 
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A. Appendix A - UML Diagrams 

Appendix A contains the UML diagrams, showing the relationships between classes used in the 

framework. 

A.1 Relevant System Packages 

 

Figure 32.  COVE System Packages 
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A.2 commands Package 

 

Figure 33.  Commands Package Classes 
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A.3 desktop Package 

 

Figure 34.  Desktop Package Classes 
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Figure 35.  Utility Classes used in cove.desktop Package 
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A.4 loader Package 

 

Figure 36.  Loader Classes 
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A.5 jspace Package 

 

Figure 37.  Session Service Classes 
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Figure 38.  Session Management Classes 
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Figure 39.  Various Classes used in cove.jspace Package 
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A.6 toolbar Package 

 

Figure 40.  Toolbar Package Classes 
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A.7 workspace Package 

 

Figure 41.  Workspace Classes 
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B. Appendix B - RMI Information 

This appendix covers the basics of Remote Method Invocation (RMI).  This is not intended to 

provide a deep knowledge and cover the topic in depth, but should help provide additional background 

information on what RMI is.  Jini™ technology relies heavily on RMI system for its implementation.  

Additional information can be found in RMI [54] and Appendix A of Core Jini [16]. 

B.1 Overview 

Remote Method Invocation (RMI) provides the mechanisms needed for applications running on 

different Java Virtual Machines (JVMs) to communicate with each other.  Very much like Remote 

Procedure Call (RPC), a well-known concept in distributed systems, RMI enables one application to call 

another class’ method on another machine. 

B.2 Remote Interfaces 

Remote objects are objects that expose their methods so they can be called by other objects on 

other machines.  In client/server terminology, the remote object is the server and the caller of the method is 

the client.  Note that RMI is more robust than strict client/server architectures.  Remote objects can have 

element of both client and server within the same object. 

For a client to make a call to the remote object, it first must know what interface it implements.  

Thus, providing the client information on what methods are available on the server.  RMI provides a set of 

Application Programmer Interfaces (APIs) called the server’s remote interface.  This interface defines what 

methods can be invoked from outside the server’s JVM. 

The remote interface of a server is simply defined by any interface that extends the RMI Remote 

interface.  This acts as a flag to RMI to indicate that this interface must have the mechanism implemented 

to enable its methods to be called remotely.  The server object that actually does the work is just the 

implementation of this remote interface. 
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B.3 Stubs and Skeletons 

The JVM only knows how to perform local method invocations.  Thus, to enable remote method 

invocations, a bit of extra code on top of the JVM must be used. 

The first functionality needed to be added is for the server to be able to handle network 

connections from clients, read data from those clients, and then turn that data into a local method 

invocation.  Second is for the client to make a local call on an object that represents the remote object.  

(They must both directly invoke methods on local objects, because that is all the JVM knows how to do.)  

This local object then creates the connection with the server and passes it data.  Once the invocation 

completes, the server must send the data back to the client. 

On the server side, two classes handle most of the additional functionality.  First, to provide 

network communications, the server object extends a class called RMI UnicastRemoteObject.  This 

extension has all the low level detail necessary to send and receive messages.  The second class, called the 

skeleton, handles the calling of a specific method on a particular server object.  The skeleton object is 

paired with a server object, because it needs to know what methods are available, and what parameters and 

return value they have.  The skeleton’s main job is to take data received from the network, figure out what 

operation to invoke on the server and return the result. 

The client side is a little simpler, because all the client has to do is map the local object invocation 

on the object representing the server to actual network communication.  The local object that handles the 

responsibility of packaging data and managing the network connection is called the stub.  So, whenever a 

client makes a remote invocation, it actually invokes a method in the local stub object.  The stub then sends 

a message to the remote JVM, where it is received and translated by the skeleton into a local method call.  

Figure 42 illustrates the how the client and the server communicate through the use of stubs and skeletons.  

This may seem like a lot of work, but most of it is transparent to the users.  So when programming the 

client, just write the code in terms of the remote interfaces that will be call. 
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Figure 42.  RMI - Client and Server Communicate via Stubs and Skeletons [16] 

B.4 Serialization 

Stub and skeletons take care of packaging the data to be sent over the network.  The network only 

understands one thing, and that is bytes.  So, the stubs and skeletons take care of turning the parameter and 

return value into streams of bytes and then reconstituting them on the other end.  The mechanism for doing 

this transformation into a stream of bytes is called serialization. 

The Java language defines an interface called Serializable.  This interface does not add any 

additional methods that are required to be implemented, but acts as a tag to indicate to Java that this class 

may be serialized. 

Without this mechanism of serialization, RMI would have no way of sending complex objects 

over the network.  Any object that is used as a parameter or return value must be serializable.  Primitive 

types (e.g. int, boolean, long) are considered to be serializable. 

For an object to become serializable several condition must exist.  First, it must have a public no-

argument constructor defined.  This is needed in the deserialization process.  Second, the class may not 

reference any non-serializable objects.  If it does reference an object that is not serializable, this object 

becomes non-serializable. 
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B.5 Parameters and Return Values 

How does parameter passing in RMI actually work?  Any parameter or return value that is used in 

an RMI must be serializable.  The fact that all the data is serialized prior to being sent has some important 

ramifications.  In local method calls, references to objects are passed.  However, RMI copies the arguments 

and return values of the remote calls.  So the semantics for input and output objects are “pass by value” 

rather than “pass by reference.” 

What happens when an application passes a remote object into a remote method as an argument or 

returns it from a remote method?  To answer this question, RMI does some “under the covers” operation to 

handle this situation.  Say in the implementation of the remote server, one of its methods returns a reference 

to this (or in other words, itself).  On the server, this refers to the actual implementation object that lives in 

the server’s virtual machine (VM).  Remember that the client always deals with the server through its stub; 

thus, it has no way of directly referring to an object on another VM.  So what is desired when the server 

returns itself, is for the client to receive a reference to the server’s stub.  Thus, it gives the appearance that 

the client is working directly with the remote object. 

To make this happen, RMI searches for input and output parameters that are references to objects 

that implement the Remote interface.  When one of these is identified, it replaces the stub as appropriate.  

So if a server returns a reference to itself, RMI “converts” it to a stub so the client can use it. 

This transparent argument swapping gives the illusion that both the server and client are working 

with local objects.  This, in effect, maintains the “pass by reference” semantics.  When the application 

passes a remote object in or out of a method call, what actually is returned is a “live” reference to that 

remote object. 

B.6 Dynamic Code Loading 

Serialization only packages up member data within an object; it does not package up the code that 

implements the object.  So if an object is sent over a network, how can it be used if the other end does not 
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get the code?  The answer to this question is what sets RMI apart from traditional remote procedure call.  

RMI allows a JVM to dynamically download implementation files when needed. 

An example will best illustrate this concept.  Consider a server that implements a sort routine that 

takes as a parameter a List (well-defined interface that is part of Java 2) and returns a List.  Since this is an 

interface, the client can send a class that implements that List interface.  Now consider the client wants to 

use a new, custom implementation called QuickList.  This works fine on a local system because the sort 

routine only cares that the input speaks the List interface and the implementation of the QuickList is 

available.  This is a good example of polymorphism at work. 

However, this situation presents a problem in the remote case.  The server knows nothing about 

this QuickList class and does not have the implementation available to it.  To solve the problem, it would be 

efficient to send the QuickList implementation to the server so it can operate on the new data structure and 

return a result.  RMI does exactly that: it sends the implementation of unknown classes to enable servers to 

operate on them. 

Normally, a Java application finds all the needed implementations of classes in it classpath – a set 

of directories or JAR files containing class files.  RMI extends the concept of the classpath with the notion 

of a codebase.  The codebase can be thought of as a new location for classfiles that is dynamically 

allocated so a program can retrieve implementation to new classes. 

Any program that exports classes sets a codebase that indicates where the implementations may be 

found.  The codebase is then sent to any downloading program tagged on the serialization of the object’s 

data.  The receiver then reconstitutes the serialized object and, if the classfile is not locally available, 

downloads it from the location indicated by the codebase.  RMI uses the ability of Java programs to copy 

bytecodes from URLs and securely execute them to provide downloadable code. 

A hypertext transfer protocol (http) server most commonly services the capability of downloadable 

code.  Programs that export code set a codebase, via a property to the server’s JVM, that contains the http 

URL that indicates the location of the codebase.  The most common use of downloadable code is the 
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transmission of remote object stubs to clients.  This way the client only needs to know about the remote 

interface that the server object implements. 

More information regarding codebase can be found in a chapter called “How Codebase Works” in 

Core Jini, Second Edition written by Keith W. Edwards [15]. 

B.7 Security Concerns 

Being able to download code from another application on the fly creates some serious security 

concerns.  What if the code that is downloaded is malicious?  Just like applets, RMI can provide a restricted 

environment for running code obtained in this fashion. 

In Java, a SecurityManager installed in the run time environment maintains application security.  

To prevent malicious code from doing harm, RMI will not run any code if there is no SecurityManager 

active in the downloading program – instead, the program must be able to find all classes, including stubs 

in the local classpath. 

This situation, however, is not suitable for production.  RMI provides a simple security manager 

that can be set to run, to enable downloadable code.  It is called RMISecurityManager.  A security policy 

file that is passed in on the command line to a Java program configures security for the VM.  The security 

policy file defines certain permission for the code in an application, based on where the code came from. 

B.8 Building, Compiling and Running RMI Programs 

When building an RMI program, the first thing to do is write a remote interface that extends the 

Remote interface.  Next supply an implementation to the remote interface and a client that will use the 

remote interface to make the method invocation.  For illustration, three java files named: Add.java, 

AddImpl.java, and AddClient.java are created.  The Add.java file provides the remote interface.  The 

AddImpl.java file contains the implementation or the server code of an array adder.  The last file, 

AddClient.java, is the client code that will use the remote interface to add the contents of two arrays.  Once 

all the code is written, they need to be compiled using the Java compiler. 

110 



 

javac Add.java AddImpl.java AddClient.java 

This command above will compile all the java files and output the appropriate bytecode class files.  

Currently, no mention of stub or skeletons files has been made.  So where do they get created?  RMI 

provides a stub compiler that is used to generate the stubs and skeletons called rmic.  Thus, the following 

command would need to be issued on the class that implements the remote interface. 

rmic AddImpl 

This command will generate two files, namely AddImpl_Stub.class and AddImpl_Skel.class.  These are then 

used to enable the RMI to occur. 

To run a RMI application, the RMI registry process must be started first.  This is started by the 

rmiregistry command.  The server application is then run and bound it to the RMI registry.  A simple 

command such as: java AddImpl does the trick.  This must be done so the client will have a server to access 

when it makes its remote procedure call.  With all that accomplished, the application can finally be run with 

the simple command: java AddClient.  The AddClient class will then use the AddImpl server to add two 

arrays and send back a result. 
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